Skip to main content
Log in

Modeling of dissolution, growth, and coarsening of aluminum nitride in low-carbon steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A the oretically based model was developed by using numerical integration methods on a multiparticle system to predict the dissolution and growth kinetics of nitrides and carbides in steels undergoing heat treatment. This model takes fully into account the equilibrium thermodynamic properties of the systems, the local equilibrium at the interface, curvature effects, and diffusion along the grain boundary. Dissolution and coarsening are being treated as one continuous, simultaneous process. In the present work, the model is applied to study the dissolution and coarsening behavior of aluminum nitride (A1N) in Al-killed low-carbon steels. The oretically predicted particle-size distributions are in good agreement with the experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.T. Turkdogan: 70th Steelmaking Conf. Proc., Pittsburgh, PA, ISS, Warrendale, PA, 1987, pp. 399–416.

    Google Scholar 

  2. M. Tacikowski, G.A. Osinkolu, and A. Kobylanski: ActaMetall., 1988, vol. 36(4), pp. 995–1004.

    CAS  Google Scholar 

  3. J.C. Herman, B. Donnay, and V. Leroy: Iron Steel Inst. Jpn. Int., 1992, vol. 32(6), pp. 779–85.

    CAS  Google Scholar 

  4. L.E. Cepeda, J.M. Rodriguez-Ibabe, and J.J. Urcola: Z. Metallkd., 1992, vol. 83(11), pp. 801–08.

    CAS  Google Scholar 

  5. S. Zajac, R. Lagneborg, and T. Siwecki: Microalloying ’95 Conf. Proc., Pittsburgh, PA, 1995, ISS, Warrendale, PA, pp. 321–37.

    Google Scholar 

  6. M.J. Whelan: Met. Sci. J., 1969, vol. 3, pp. 95–97.

    CAS  Google Scholar 

  7. H.B. Aaron and G.R. Kotler: Metall. Trans., 1971, vol. 2, pp. 393–408.

    CAS  Google Scholar 

  8. L.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  9. C. Wagner: Z. Elektrochem., 1961, vol. 65, pp. 581–91.

    CAS  Google Scholar 

  10. M.J. Whelan: Met. Sci. J., 1969, vol. 3, pp. 95–97.

    CAS  Google Scholar 

  11. R.D. Doherty: Physical Metallurgy, 3rd ed., R.W. Cahn and P. Haasen, eds., Elsevier Science, New York, NY, 1983, p. 933.

    Google Scholar 

  12. H. Zou and J.S. Kirkaldy: Can. Metall. Q., 1989, vol. 28(2), pp. 171–77.

    CAS  Google Scholar 

  13. J.J. Hoyt: Acta Metall. Mater., 1991, vol. 3(9), pp. 2091–98.

    Google Scholar 

  14. F.P. Incropera and D.P. de Witt: Fundamentals of Heat and Mass Transfer, Wiley, New York, NY, 1985.

    Google Scholar 

  15. D. Turnbull: Impurities and Imperfections, ASM, Cleveland, OH, 1955, p. 121.

    Google Scholar 

  16. J.H. Van der Merwe: J. Appl. Phys., 1963, vol. 34, pp. 117–27.

    Article  Google Scholar 

  17. W.J. Liu and J.J. Jonas: Mater. Sci. Technol., 1989, vol. 5, pp. 8–12.

    CAS  Google Scholar 

  18. L.M. Cheng, E.B. Hawbolt, and T.R. Meadowcroft: Can. Metall. Q., 2000, vol. 39(1), pp. 107–20.

    Google Scholar 

  19. L.M. Cheng: Ph.D. Thesis, University of British Columbia, Vancouver, 1999.

    Google Scholar 

  20. H. Oikawa: Tetsu-to-Hagané, 1982, vol. 68(10), pp. 1489–97.

    CAS  Google Scholar 

  21. M. Gemmaz, M. Aryouni, and A. Mosser: Surf. Sci. Lett., 1990, vol. 227(1–2), pp. L109-L111.

    Article  CAS  Google Scholar 

  22. Handbook of Grain and Interphase Boundary Diffusion Data, I. Kaur, W. Gust, and L. Kozma, eds., Ziegler Press, Stuttgart, 1989, vol. 1.

    Google Scholar 

  23. M. Hillert and M. Jarl: Metall. Trans. A, 1975, vol. 6A, pp. 553–59.

    CAS  Google Scholar 

  24. J. Ågren: Metall. Trans. A, 1979, vol. 10A, pp. 1847–52.

    Google Scholar 

  25. K. Frisk: Metall. Trans. A, 1990, vol. 21A, pp. 2477–88.

    CAS  Google Scholar 

  26. K.C.H. Kumar and V. Raghavan: J. Phase Equilibria, 1991, vol. 12(3), pp. 275–86.

    CAS  Google Scholar 

  27. M. Hillert and S. Jonsson: Metall. Trans. A, 1992, vol. 23A, pp. 3141–49.

    CAS  Google Scholar 

  28. M.W. Chase, Jr., C.A. Davies, and J.R. Downey: J. Phys. Chem. Ref. Data, 1985, vol. 14, suppl. 1, p. 62.

    Google Scholar 

  29. M.W. Chase, Jr., C.A. Davies, and J.R. Downey: J. Phys. Chem. Ref. Data, 1985, vol. 14, suppl. 1, p. 131.

    Google Scholar 

  30. G.A. Jeffrey and V.Y. Wu: Acta Crystallogr., 1963, vol. 16, pp. 559–66.

    Article  CAS  Google Scholar 

  31. ASM Engineered Materials Reference Book, 2nd ed., M. Bauccio, ed., ASM International, Metals Park, OH, 1994.

    Google Scholar 

  32. J.F. Shackelford, W. Alexander, and J.S. Park: CRC Materials Science and Engineering Handbook, 2nd ed., CRC Press, Boca Raton, FL, 1994.

    Google Scholar 

  33. H. Frost and M. Ashby: Deformation-Mechanism Maps, Pergamon Press, Elmsford, NY, 1982, pp. 62–63.

    Google Scholar 

  34. Smithells Metals Reference Book, 7th ed., E.A. Brandes and G.B. Brook, eds., Butterworths, London, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, L.M., Hawbolt, E.B. & Meadowcroft, T.R. Modeling of dissolution, growth, and coarsening of aluminum nitride in low-carbon steels. Metall Mater Trans A 31, 1907–1916 (2000). https://doi.org/10.1007/s11661-000-0218-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0218-8

Keywords

Navigation