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A direct approach to Bergman kernel
asymptotics for positive line bundles

Robert Berman, Bo Berndtsson and Johannes Sjöstrand

Abstract. We give an elementary proof of the existence of an asymptotic expansion in

powers of k of the Bergman kernel associated to Lk, where L is a positive line bundle over

a compact complex manifold. We also give an algorithm for computing the coefficients in the

expansion.

1. Introduction

Let L be a holomorphic line bundle with a positively curved Hermitian metric φ,
over a complex manifold X . Then i/2 times the curvature form ∂∂̄φ of L defines
a Kähler metric on X , that induces a scalar product on the space of global sections
with values in L. The orthogonal projection P from L2(X,L) onto H0(X,L), the
subspace of holomorphic sections, is the Bergman projection. Its kernel with respect
to the scalar product is the Bergman kernel K of H0(X,L); it is a section of L̄⊗L
over X×X . It can also be characterized as a reproducing kernel for the Hilbert
space H0(X,L), i.e.

α(x)= (α,Kx)(1.1)

for any element α of H0(X,L), where Kx=K( · , x) is identified with a holomorphic
section of L⊗L̄x, where Lx denotes the fiber of L over x. The restriction of K to
the diagonal is a section of L̄⊗L and we let B(x)=|K(x, x)| be its pointwise norm.

Even though the Bergman kernel is of course impossible to compute in general,
quite precise asymptotic formulas, when we replace L by Lk and φ by kφ, are known,
see Zelditch [15], Catlin [5] and Tian [14]. Namely

Kx(y)e−kψ(y,x) =
kn

πn

(
1+

b1(x, y)
k

+
b2(x, y)
k2

+...
)

(1.2)

as k!∞.
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Here ψ is an (almost) holomorphic extension of φ and the bj ’s are certain
Hermitian functions. In particular, on the diagonal y=x we have an asymptotic
series expansion for

Kx(x)e−kφ(x) =
kn

πn

(
1+

b1(x, x)
k

+
b2(x, x)
k2

+...
)
.

The functions bj(x, x) contain interesting geometric information of X with the
Kähler metric i∂∂̄φ/2, see Lu [11].

In [15] and [5] the existence of an asymptotic expansion is proved using a for-
mula, due to Boutet de Monvel and Sjöstrand, for the boundary behaviour of the
Bergman–Szegő kernel for a strictly pseudoconvex domain, [4], extending an earlier
result of C. Fefferman, [6], to include also the off-diagonal behaviour. The purpose
of this paper is to give a direct proof of the existence of this expansion, the main
point being that it is actually simpler to construct an asymptotic formula directly.
Our method also gives an effective way of computing the terms bj in the asymptotic
expansion. Even though the inspiration for the construction comes from the calcu-
lus of Fourier integral operators with complex phase, the arguments in this paper
are elementary.

The method of proof uses localization near an arbitrary point of X . Local holo-
morphic sections of Lk in a small coordinate neighbourhood U are just holomorphic
functions on U , and the local norm is a weighted L2-norm over U with weight func-
tion e−kφ, where φ is a strictly plurisubharmonic function. Using ideas from [13]
we then compute local asymptotic Bergman kernels on U . These are holomorphic
kernel functions, and the scalar product with such a kernel function reproduces the
values of holomorphic functions on U up to an error that is small as k!∞. Assum-
ing that the bundle is globally positive it is then quite easy to see that the global
Bergman kernel must be asymptotically equal to the local kernels.

Many essential ideas of our approach were already contained in the book [13]
written by the third author. Here we use them in order to find a short derivation
of the Bergman kernel asymptotics. For the closely related problem of finding the
Bergman kernel for exponentially weighted spaces of holomorphic functions, this
was done by Melin and the third author [12], but in the present paper we replace
a square root procedure used in that paper by a more direct procedure, which
we think is more convenient for the actual computations of the coefficients in the
asymptotic expansions. There are also close relations to the subject of weighted
integral formulas in complex analysis [3]. We have tried to make the presentation
almost self-contained, hoping that it may serve as an elementary introduction to
certain micro-local techniques with applications to complex analysis and differential
geometry.
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2. The local asymptotic Bergman kernel

The local situation is as follows. Fix a point in X . We may choose local
holomorphic coordinates x centered at the point and a holomorphic trivialization s
of L such that

|s|2 = e−φ(x),(2.1)

where φ is a smooth real-valued function. L is positive if and only if all local
functions φ arising this way are strictly plurisubharmonic. We will call φ0(x)=|x|2
the model fiber metric, since it may be identified with the fiber metric of a line
bundle of constant curvature on Cn. The Kähler form ω of the metric on our base
manifold X is given by i/2 times the curvature form of L,

ω=
i∂∂̄φ

2
.

The induced volume form on X is equal to ωn :=ωn/n!. Now any local holomorphic
section u of Lk may be written as us⊗k, where u is a holomorphic function. The
local expression of the norm of a section of Lk over U is then given by

‖u‖2
kφ :=

∫
U

|u|2e−kφωn,

where u is a holomorphic function on U . The class of all such functions u with finite
norm is denoted by Hkφ(U).

We now turn to the construction of local asymptotic Bergman kernels. The
main idea is that since a posteriori Bergman kernels will be quite concentrated
near the diagonal, we require a local Bergman kernel to satisfy the reproducing
formula (1.1) locally, up to an error which is exponentially small in k. In the sequel
we fix our coordinate neighbourhood to be the unit ball of Cn. Let χ be a smooth
function supported in the unit ball B and equal to one on the ball of radius 1

2 .
We will say that Kk is a reproducing kernel modO(e−δk) for Hkφ if for any fixed
x in some neighbourhood of the origin we have that for any local holomorphic
function uk,

uk(x)= (χuk,Kk,x)kφ+O(ek(φ(x)/2−δ))‖u‖kφ,(2.2)

uniformly in some neighbourhood of the origin. Furthermore, if Kk,x(y) is holo-
morphic in y we say that Kk,x is a Bergman kernel modO(e−δk).

Given a positive integer N , Bergman and reproducing kernels mod O(k−N ) are
similarly defined.
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2.1. Local reproducing kernels mod e−δk

Let φ be a strictly plurisubharmonic function in the unit ball and let u be
a holomorphic function in the ball such that

‖u‖2 :=
∫
B

|u|2e−kφωn<∞.

We shall first show that (cf. [13]) integrals of the form

cn

(
k

2π

)−n ∫
Λ

ekθ·(x−y)u(y) dθ∧dy,(2.3)

define reproducing kernels mod e−δk for suitably chosen contours

Λ = {(y, θ) ; θ= θ(x, y)}.

Here we think of x as being fixed (close to the origin) and let y range over the unit
ball, so that Λ is a 2n-dimensional submanifold ofBy×Cnθ , and cn=in(−1)n(n+1)/2=
i−n

2
is a constant of modulus 1 chosen so that cn dȳ∧dy is a positive form. Let us

say that such a contour is good if uniformly on Λ for x in some neighbourhood of
the origin and |y|≤1,

2 Re θ ·(x−y)≤−δ|x−y|2−φ(y)+φ(x).

Note that, by Taylor’s formula

φ(x)=φ(y)+2 Re
n∑
j=1

Qj(x, y)(xj−yj)+
n∑

j,l=1

φjl̄(xj−yj)(xl−yl)+o(x−y)2,

where
∑n

j=1Qj(x, y)(xj−yj) is the part of the second order Taylor expansion which
is holomorphic in x. Hence, if φ is strictly plurisubharmonic,

θ(x, y)=Q(x, y)

is a good contour, depending on x in a holomorphic way. In particular, θ=ȳ defines
a good contour for φ(x)=|x|2.

Proposition 2.1. For any good contour,

u(x)=
(
k

2π

)n
cn

∫
Λ

ekθ·(x−y)u(y)χ(y) dθ∧dy+O(ek(φ(x)/2−δ))‖u‖kφ,

for x in some fixed neighbourhood of 0 if u is an element of Hkφ(B).
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Proof. For a real variable s between 0 and ∞, we let

Λs= {(x, y, θ) ; θ−s(x̄−ȳ)∈Λ},
and denote by η=ηk the differential form

η= cn

(
k

2π

)n
ekθ·(x−y)u(y)χ(y) dθ∧dy.

Our presumptive reproducing formula is the integral, I0, of η over Λ0 and it is easy
to see that the limit of

Is :=
∫

Λs

η,

as s!∞, equals u(x). (This is because cn(s/2π)ne−s|x−y|
2
dȳ∧dy tends to a Dirac

measure at x as s!∞.) The difference between I0 and Is is by Stokes’ formula

I0−Is=
∫
B×[0,s]

dh∗(η),

where h is the homotopy map

h(y, λ)= (y, θ(x, y)−λ(x̄−ȳ)).
Now,

dη= cn

(
k

2π

)n
ekθ·(x−y)u dχ∧dθ∧dy.

This equals 0 if |y|< 1
2 , and since θ is good we have the estimate

|dh∗(η)| ≤Cknek(−(δ/2+λ)|x−y|2−φ(y)/2+φ(x)/2)(1+λ)n|u(y)|.
If |x| is, say smaller than 1

4 , |x−y|≥ 1
4 when dη is different from 0, so we get

∣∣∣∣
∫
B×[0,s]

dh∗(η)
∣∣∣∣≤Cknek(φ(x)/2−δ)

∫
|y|>1/2

|u(y)|e−kφ(y)/2

∫ s

0

(1+λ)ne−kλ dλ

with a smaller δ. By the Cauchy inequality the first integral in the right-hand side
is dominated by

‖u‖kφ.
Since the last integral is bounded by a constant independent of k we get the desired
estimate. �
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Thus we have a family of reproducing kernels mod e−δk. When φ=|y|2 and θ=ȳ,
the kernel ex̄·y in the representation is also holomorphic in y so we even have an
asymptotic Bergman kernel mod e−δk. To achieve the same thing for general weights
we need to introduce a bit more flexibility in the construction by allowing for a more
general class of amplitudes in the integral. We will replace the function χ in the
integral by χ(1+a) for a suitably chosen function a, where a has to be chosen to
give an exponentially small contribution to the integral.

For this we consider differential forms

A=A(x, y, θ, k)=
n∑
l=1

Al(x, y, θ, k) d̂θl

of bidegree (n−1, 0). By d̂θl we mean the wedge product of all the differentials
dθj except dθl, with sign chosen so that dθl∧d̂θl=dθ. We assume that A has an
asymptotic expansion of order 0,

A∼A0+
A1

k
+...

By this we mean that for any N≥0,

A−
N∑
m=0

Am
km

=O

(
1

kN+1

)

uniformly as k!∞.
We assume also that the coefficients are holomorphic (in the smooth case almost

holomorphic) for x, y and θ of norm smaller than 2. Let

a dθ= e−kθ·(x−y) dθekθ·(x−y)A,

so that

a=Dθ ·A+k(x−y)·A=:∇A,(2.4)

where Dθ=∂/∂θ. We will say that a function a arising in this way is a negligible
amplitude. In the applications we will also need to consider finite order approxi-
mations to amplitude functions. Let

A(N) =
N∑
m=0

Am
km

and similarly

a(N) =
N∑
m=0

am
km

.



A direct approach to Bergman kernel asymptotics for positive line bundles 203

Then

a(N) =∇A(N+1)−Dθ ·AN+1

kN+1
,

so a(N) is a negligible amplitude modulo an error term which is O(k−N−1).

Proposition 2.2. For any good contour Λ and any negligible amplitude a,

u(x)= cn

(
k

2π

)n ∫
Λ

ekθ·(x−y)u(y)χ(y)(1+a) dθ∧dy+O(ek(φ(x)/2−δ))‖u‖kφ,

for all x in a sufficiently small neighbourhood of the origin, if u is an element of
Hkφ(B). Moreover

u(x)= cn

(
k

2π

)n ∫
Λ

ekθ·(x−y)u(y)χ(y)(1+a(N)) dθ∧dy+O
(
ekφ(x)/2

kN+1−n

)
‖u‖kφ.

Proof. For the first statement we need to verify that the contribution from a

is exponentially small as k!∞. But

∫
Λ

ekθ·(x−y)u(y)χ(y)a dθ∧dy=
∫

Λ

u(y)χ(y) dθ(ekθ·(x−y)A)∧dy

=
∫

Λ

χd(u(y)ekθ·(x−y)A∧dy)

=−
∫

Λ

dχ∧u(y)ekθ·(x−y)A∧dy.

Again, the last integrand vanishes for |y|< 1
2 and is, since Λ is good, dominated by

a constant times

|u(y)|ek(−δ|x−y|2−φ(y)/2+φ(x)/2)

The last integral is therefore smaller than

‖u‖O(ek(φ(x)/2−δ))

so the first formula is proved. The second formula follows since by the remark
immediately preceding the proposition, a(N) is a good amplitude modulo an error
of order k−N−1. �
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The condition that an amplitude function a can be written in the form (2.4)
can be given in an equivalent very useful way. For this we will use the infinite order
differential operator

Sa=
∞∑
m=0

1
km(m!)

(Dθ ·Dy)m.

This is basically the classical operator that appears in the theory of pseudodiffer-
ential operators when we want to replace an amplitude a(x, y, θ) by an amplitude
b(x, θ) independent of y, see [8]. We let S act on (n−1)-forms A as above com-
ponentwise. We say that Sa=b for a and b admitting asymptotic expansions if all
the coefficients of the powers k−m in the expansion obtained by applying S to a

formally equal the corresponding coefficients in the expansion of b. No convergence
of any kind is implied. That Sa equals b to order N means that the same thing
holds for m≤N . Note also that since formally

S= eDθ·Dy/k,

we have that

S−1 = e−Dθ·Dy/k =
∞∑
m=0

1
(−k)m(m!)

(Dθ ·Dy)m.

Lemma 2.3. Let

a∼
∞∑
m=0

am(x, y, θ)
km

be given. Then there exists an A satisfying (2.4) asymptotically if and only if

Sa|x=y = 0.

Moreover the last equation holds to order N if and only if a(N) can be written as

a(N) =∇A(N+1)+O
(

1
kN+1

)
.(2.5)

Proof. Note first that S commutes with Dθ and that

S((x−y)·A)= (x−y)·SA− 1
k
Dθ ·SA.

Moreover

∇A=Dθ ·A+k(x−y)·A,
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so it follows that

S∇A=SDθ ·A+kS(x−y)·A(2.6)

=DθSA+k(x−y)·SA−DθS ·A= k(x−y)·SA.
Thus, if a admits a representation a=∇A, then Sa must vanish for x=y. Similarly,
if

a(N) =∇A(N+1)+O
(

1
kN+1

)
.

it follows that Sa(N)|y=x=0 to order N .
Conversely, assume that Sa|y=x=0 . Then Sa=(x−y)·B for some form B.

But (2.6) implies that

∇S−1 = kS−1(x−y)·
so

a=S−1((x−y)·B)=
1
k
∇S−1B

and (2.4) holds with A=k−1S−1B. If the equation Sa|y=x=0 only holds to order N ,
then

Sa(N) = (x−y)·B(N)

to order N . Hence

a(N) =S−1((x−y)·B(N))=
1
k
∇S−1B(N) =

1
k
∇(S−1B)(N)

to order N , so (2.5) holds with A(N+1)=k−1(S−1B)(N). �

2.2. The phase

Let us now see how to choose the contour Λ to get the phase function ψ(x, ȳ)
appearing in the expression

eθ·(x−y).

In this section we still assume that the plurisubharmonic function φ is real-analytic
and let ψ(x, y) be the unique holomorphic function of 2n variables such that

ψ(x, x̄)=φ(x).

By looking at the Taylor expansions of ψ and φ one can verify that

2 Reψ(x, ȳ)−φ(x)−φ(y)≤−δ|x−y|2(2.7)

for x and y sufficiently small. Following an idea of Kuranishi, see [9] and [7], we
now find a holomorphic function of 3n variables θ(x, y, z) that solves the division
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problem

θ ·(x−y)=ψ(x, z)−ψ(y, z).(2.8)

This can be done in many ways, but any choice of θ satisfies

θ(x, x, z)=ψx(x, z).

To fix ideas, we take

θ(x, y, z)=
∫ 1

0

∂ψ(tx+(1−t)y, z) dt

with ∂ denoting the differential of ψ with respect to the first n variables.
Since θ(x, x, z)=ψx(x, z) it follows that

θz(0, 0, 0)=ψxz(0, 0)=φxx̄(0, 0)

is a nonsingular matrix. Therefore

(x, y, z) 
−! (x, y, θ)

defines a biholomorphic change of coordinates near the origin. After rescaling we
may assume that ψ is defined and satisfies (2.7) and that the above change of
coordinates is well defined when |x|, |y| and |z| are all smaller than 2. We now
define Λ by

Λ = {(y, θ) ; z= ȳ}.
Thus, on Λ, θ is a holomorphic function of x, y and ȳ. The point of this choice is
that by (2.8),

θ ·(x−y)=ψ(x, ȳ)−ψ(y, ȳ) on Λ.

Therefore we get the right phase function in our kernel and by (2.7),

2 Re θ ·(x−y)= 2 Reψ(x, ȳ)−2φ(y)≤φ(x)−φ(y)−δ|x−y|2,
which means that Λ is a good contour in the sense of the previous section. By Prop-
osition 2.2 we therefore get the following proposition, where we use the notation β
for the standard Kähler form in Cn,

β=
i

2

n∑
j=1

dyj∧dȳj .

Proposition 2.4. Suppose that u is in Hkφ. If a(x, y, θ, 1/k) is a negligible
amplitude, we have that

u(x)=
(
k

π

)n ∫
Cn

χxe
k(ψ(x,ȳ)−ψ(y,ȳ))(det θȳ)u(y)(1+a)βn+O(ek(φ(x)/2+δ))‖u‖kφ,

(2.9)
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with a=a(x, y, θ(x, y, ȳ), 1/k). Moreover

u(x)=
(
k

π

)n ∫
Cn

χxe
k(ψ(x,ȳ)−ψ(y,ȳ))(det θȳ)u(y)(1+a(N))βn

+O(ekφ(x)/2kn−N−1)‖u‖kφ.

2.3. The amplitude

In order to get an asymptotic Bergman kernel from (2.9) we need to choose
the amplitude a so that

det θȳ(1+a)=B(x, ȳ) detψyȳ,

with B analytic. Polarizing in the y-variable, i.e. replacing ȳ by z, this means that(
1+a

(
x, y, θ(x, y, z),

1
k

))
=B

(
x, z,

1
k

)
detψyz(y, z)
det θz(x, y, z)

,

where B is analytic and independent of y. Consider this as an equation between
functions of the variables x, y and θ. Let

∆0(x, y, θ)=
detψyz(y, z)
det θz(x, y, z)

= det ∂θψy.

Since ψy=θ when y=x we have that ∆0=1 for y=x. We need a to be representable
in the form (2.4) which by Lemma 2.3 means that Sa=0 for y=x. Equivalently,
S(1+a)=1 for y=x, so we must solve

S

(
B

(
x, z(x, y, θ),

1
k

)
∆0(x, y, θ)

)
= 1(2.10)

for y=x. This equation should hold in the sense of formal power series which means
that the coefficient of k0 must equal 1, whereas the coefficient of each power k−m

must vanish for m>0. In the computations, x is held fixed and z=z(y, θ). The first
equation is

b0(x, z(x, y, θ))∆0(x, x, θ)= 1.(2.11)

This means that b0(x, z(x, θ))=1 for all θ, which implies that b0 is identically equal
to 1.

The second condition is

(Dθ ·Dy) (b0∆0)+b1∆0 = 0(2.12)

for y=x. Since we already know that b0=1 this means that

b1(z(x, θ))=−(Dθ ·Dy)(∆0)|y=x,
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which again determines b1 uniquely. Continuing in this way, using the recursive
formula

m∑
l=0

(Dθ ·Dy)l

l!
(bm−l∆0)|x=y = 0(2.13)

for m>0, we can determine all the coefficients bm, and hence a. Then Sa|y=x=0
so Sa(N)|y=x=0 to order N , and the next proposition follows from Proposition 2.4
and Lemma 2.3.

Proposition 2.5. Suppose that φ is analytic. Then there are analytic func-
tions bm(x, z) defined in a fixed neighbourhood of x so that for each N(

k

π

)n(
1+

b1(x, ȳ)
k

+...+
bN (x, ȳ)
kN

)
ekψ(x,ȳ),(2.14)

is an asymptotic Bergman kernel modO(k−N−1).

2.4. Computing b1

Let us first recall how to express some Riemannian curvature notions in Hermit-
ian geometry. The Hermitian metric two-form ω := 1

2 iHij dy
i∧dyj determines a con-

nection η on the complex tangent bundle TX with connection matrix (with respect
to a holomorphic frame)

η=H−1∂H =:
n∑
j=1

ηjdyj .(2.15)

The curvature is the matrix-valued two-form ∂̄η and the scalar curvature s is
Λ Tr ∂̄η, where Λ is contraction with the metric form ω. Hence, in coordinates
centered at x, where H(0)=I, the scalar curvature s at 0 is given by

s(0)=−Tr
( n∑
j=1

∂

∂ȳj
ηj

)
,(2.16)

considering η as matrix. We now turn to the computation of the coefficient b1 in
the expansion (2.14). By the definition of θ we have that

θj(x, y, z)=ψyj(y, z)+
1
2

n∑
k=1

(
∂

∂yk
ψyj

)
(y, z)(xk−yk)+... .(2.17)

Differentiating with respect to z gives

θz =H+ 1
2∂yH(x−y)+...,
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where H=H(y, z). Multiplying both sides by H−1 and inverting the relation we
get

θ−1
z H = I− 1

2 (H−1∂H)(x−y)+... .(2.18)

Taking the determinant of both sides in formula (2.18) gives

∆0 = 1− 1
2 Tr η(x−y)+... .(2.19)

Hence, equation (2.12) now gives, since −(∂/∂y)(x−y)=1, that

b1(0, 0)=
∂

∂θ
·
(
−1

2
Tr η

)∣∣∣∣
x=y

=−1
2
∂

∂ȳ
·Tr η

showing that b1(x, x̄)=s/2, according to (2.16).

2.5. Twisting with a vector bundle E

We here indicate how to extend the previous calculation to the case of sections
with values in Lk⊗E, where E is a holomorphic vector bundle with a Hermitian
metric G (see also [10]). First observe that u(x) is now, locally, a holomorphic
vector and the Bergman kernel may be identified with a matrix K(x, ȳ) such that

u(x)=
∫

Cn

K(x, ȳ)G(y, ȳ)u(y)ψyȳe−kψ(y,ȳ)dȳ∧dy.

To determine K one now uses the ansatz

K(x, ȳ)= cn

(
k

2π

)n
ekψ(x,ȳ)B(x, ȳ, k−1)G(x, ȳ)−1.

Then the condition on the amplitude function becomes

(2.20)
(

1+a
(
x, y, θ(x, y, z),

1
k

))
det

(
∂θ

∂z
(x, y, z)

)

=B

(
x, z,

1
k

)
G(x, z)−1G(y, z) det(ψyz),

where a now is a matrix-valued form, i.e. ∆0 in Section 2.3 is replaced by the matrix
∆G :=∆0G(x, z)−1G(y, z). Note that

G(x, z)−1G(y, z)= I−G−1(y, z)
∂

∂y
G(y, z)(x−y)+...=: I−ηE(y, z)(x−y)+...,

where ηE :=G−1(∂/∂y)G is the connection matrix of E. Hence, the equation (2.19)
is replaced by

∆G = 1−
(

Tr η
2

⊗I+ηE
)

(x−y)+... .
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The same calculation as before then shows that the matrix b1(0, 0) is given by

b1(0, 0)=−1
2
∂

∂ȳ
Tr η⊗I− ∂

∂ȳ
·ηE =

s

2
⊗I+ΛΘE,

where ΘE :=∂̄ηE is the curvature matrix of E and Λ denotes contraction with the
metric two-form ω.

Remark. Let Kk be the Bergman kernel of H0(X,Lk), defined with respect
a general volume form µn. Then the function G:=µn/ωn defines a Hermitian metric
on the trivial line bundle E and the asymptotics of Kk can then be obtained as
above.

2.6. Smooth metrics

Denote by ψ(y, z) any almost holomorphic extension of φ from ∆̄={(z, y);
z=ȳ}, i.e. an extension such that the anti-holomorphic derivatives vanish to in-
finite order on ∆̄. We may also assume that ψ(y, z̄)=ψ(z, ȳ). That ψ is almost
holomorphic means that for any multi-index α,

Dα(∂̄ψ)= 0,(2.21)

(where Dα is the local real derivative of order α) when evaluated at a point in ∆̄,
i.e. when z=ȳ. Let now

θ=
∫ 1

0

(∂yψ)(tx+(1−t)y, z) dt, θ∗ =
∫ 1

0

(∂̄yψ)(tx+(1−t)y, z) dt,(2.22)

(where ∂yψ denotes the vector of partial holomorphic derivatives with respect to
the first argument of ψ) so that

(x−y)θ+(x−y)θ∗ =ψ(x, z)−ψ(y, z).(2.23)

Then the smooth map corresponding to (x, y, z) 
!(x, y, θ) is locally smoothly in-
vertible for the same reason as in the analytic case, since ∂̄zθ=0 when x=y=z̄.
Define the algebra A of all functions almost holomorphic when x=y=z̄ as the set
of smooth functions f of x, y and z, such that

Dα∂̄f = 0

for all multi-indices α, when x=y=z̄. For a vector-valued function we will say that
it is in A, if its components are in A. We also define the vanishing ideal I∞ as the
set of smooth functions f such that

Dαf = 0

for all multi-indices α, when x=y=z̄. Hence, if f belongs to A then (the coefficients
of) ∂̄f will belong to I∞.
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Note that ψ(tx+(1−t)y, z) is in A for each fixed t. Hence θ is in A and θ∗ is
in I∞, so that (2.23) gives that (with obvious abuse of notation)

(x−y)θ=ψ(x, ȳ)−ψ(y, ȳ)+O(|x−y|∞)(2.24)

when z̄=y. The next simple lemma is used to show that the contribution of elements
in I∞ to the phase function and the amplitude is negligible.

Lemma 2.6. Let fi be elements of the vanishing ideal I∞ and let b(x, y) be
a local smooth function. Then∫

Cn

χx(y)ek(ψ(x,ȳ)−ψ(y,ȳ)+f1(x,y,ȳ))(b(x, y)+f2(x, y, ȳ))u(y)βn(y)

=
∫
χx(y)ek(ψ(x,ȳ)−ψ(y,ȳ))b(x, y)u(y)βn(y)+O

(
1
k∞

)
‖u‖kφ.

Proof. First observe that if fj is an element of I∞, then fj(x, y, ȳ)=
O(|x−y|∞). Moreover, we have that

∣∣|x−y|2Nek(ψ(x,ȳ)−φ(x)/2−φ(y)/2)
∣∣≤ C

k2N
(k|x−y|)2Ne−kδ|x−y|2 =O

(
1
k2N

)
,(2.25)

where we have used (2.7). Combining this bound with the Cauchy–Schwarz inequal-
ity proves the lemma when f1=0. Now write

ek(ψ(x,ȳ)−ψ(y,ȳ)+f1(x,y,ȳ)) = ek(ψ(x,ȳ)−ψ(y,ȳ))+
∫ 1

0

∂t(e(ψ(x,ȳ)−ψ(y,ȳ)+tf1(x,y,ȳ))) dt.

By (2.25) the second term gives a contribution which is of the order O(k−∞). Hence
the general case follows. �

Proposition 2.7. Suppose that L is smooth. Then there exists an asymptotic
reproducing kernel K(N)

k mod O(kn−N−1) for Hkφ, such that

K
(N)
k (x, ȳ)= ekψ(x,ȳ)

(
b0+

b1
k

+...+
bN
kN

)
,(2.26)

where bj is a polynomial in the derivatives ∂αx ∂̄
β
yψ(x, ȳ) of the almost holomorphic

extension ψ of φ. In particular,

e−k(φ(x)/2+φ(y)/2)(Dα
x,y(∂̄x, ∂y))K(x, y)=O

(
1
k∞

)
(2.27)

uniformly in x and y for any given α.

Proof. We go through the steps in the proof of the analytic case and indicate
the necessary modifications.
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First we determine the coefficients bm(x, z) in the same way as in the analytic
case, i.e. by fixing x and solving

S(B(z)∆0)|y=x = 1.

Here S has the same meaning as before and in particular contains only derivatives
with respect to θ and no derivatives with respect to θ̄. The difference is that ∆0 is
no longer analytic so B will not be holomorphic, but it will still belong to A since
∆0 does.

We next need to consider Lemma 2.3 with a∈A. Then we get that

(Sa)y=x =O

(
1

kN+1

)
, a∈A

if and only if there exists an A∈A such that

a=∇A+O
(

1
kN+1

)
mod I∞.

Indeed, this follows from the argument in the analytic case and the fact that if
c(=c(x, y, z))∈A, then

c(x, x, z)= 0

if and only if there exists a d∈A such that

c= (x−y)d mod I∞,

as can be seen by defining d by

d=
∫ 1

0

(∂yc)(x, x+(1−t)y, z) dt.

Here ∇ also has the same meaning as before and contains only a derivative with
respect to θ and no derivative with respect to θ̄. Then Proposition 2.2 holds as
before except that there will be one extra contribution in the application of Stokes’
theorem coming from ∂̄θA (when z=ȳ). Since ∂̄θA vanishes to infinite order when
x=y=z̄, it gives a contribution to the integral which is O(k−N ) for any N by
Lemma 2.6.

We therefore get from Proposition 2.2 a reproducing kernel of the form claimed
in (2.26) except that the phase function equals

kθ ·(x−y)= k(ψ(x, ȳ)−φ(y)+f)

with f in A. Again by Lemma 2.6 we may remove f at the expense of adding
a contribution to the integral which is negligible, i.e. which isO(k−N ) for any N . �
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3. The global Bergman kernel

In this section we will show that, if the curvature of L is positive everywhere
on X , then the global Bergman kernel Kk of H0(X,Lk) is asymptotically equal to
the local Bergman kernel K(N)

k of Hkφ (constructed in Section 2).
Recall (Section 1) that the Bergman kernel K associated to L is a section of

L̄�L over X×X . By restriction, Kx is identified with a holomorphic section of
L̄x⊗L, where Lx is the fiber of L over x. Given any two vector spaces E and F ,
the scalar product on L extends uniquely to a pairing

( · , · ) : L⊗E×L⊗F −!E⊗F,(3.1)

linear over E and anti-linear over F . In terms of this pairing, Ky has the global
reproducing property

α(y)= (α,Ky)(3.2)

for any element α ofH0(X,L). By taking α=Kx (so that E=Lx and F=L̄y in (3.1))
one gets that

K(y, x) :=Kx(y)= (Kx,Ky).(3.3)

This also implies that K(x, y)=K(y, x) and that

K(x, x)= (Kx,Kx)= ‖Kx‖2.(3.4)

K(x, x) is a section of L̄⊗L. Its norm as a section to this bundle is the Bergman
function, which, in a local frame with respect to which the metric on L is given
by e−φ, equals

B(x)=K(x, x)e−φ(x).

Notice also that by the Cauchy inequality we have an extremal characterization of
the Bergman function:

B(x)= sup |s(x)|2,
where the supremum is taken over all holomorphic sections to L of norm not greater
than 1.

We now denote by Kk the Bergman kernel associated to Lk, and write Bk for
the associated Bergman function. It follows from the extremal characterization of
the Bergman function and the submeanvalue inequality for a holomorphic section
s over a small ball with radius roughly 1/k1/2 that

Bk≤Ckn,

uniformly on X (see e.g. [1]).
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Let now K
(N)
x (y) be the local Bergman kernel as in Proposition 2.5 and

Lemma 2.6, where the coefficients bm are given by (2.13),

K(N)
x (y)=

(
k

π

)n(
1+

b1(x, ȳ)
k

+...+
bN (x, ȳ)
kN

)
ekψ(x,ȳ).(3.5)

By construction, the coefficients bm(x, z) are holomorphic if the metric on L – locally
represented by φ – is real-analytic. In case φ is only smooth the bm’s are almost
holomorphic, meaning that

∂̄xzbm

vanishes to infinite order when z=x̄.
Replacing Ky in the relation (3.3) with the local Bergman kernel K(N)

k will
now show that Kk=K

(N)
k up to a small error term.

Theorem 3.1. Assume that the smooth line bundle L is globally positive. Let
K

(N)
k be defined by (3.5), where the coefficients bm are determined by the recur-

sion (2.13).
If the distance d(x, y) is sufficiently small, then

Kk(x, y)=K
(N)
k (x, y)+O(kn−N−1)ek(φ(x)/2+φ(y)/2).(3.6)

Moreover,

Dα(Kk(x, y)−K(N)
k (x, y))=O(km+n−N−1)ek(φ(x)/2+φ(y)/2)

if Dα is any differential operator with respect to x and y of order at most m.

Proof. Let us first show that

Kk(y, x)= (χKk,x,K
(N)
k,y )+O(kn−N−1)ek(φ(x)/2+φ(y)/2),(3.7)

where χ is a cut-off function equal to 1 in a neighbourhood of x which is large
enough to contain y. Fixing x and applying Proposition 2.5 to uk=Kk,x gives (3.7)
with the error term

eφ(y)/2O

(
1

kN+1

)
‖Kx‖.

Now, by (3.4) and the estimate for Bk,

‖Kk,x‖2 =Bk(x)ekφ(x) ≤Cknekφ(x).

This proves (3.7) with uniform convergence.



A direct approach to Bergman kernel asymptotics for positive line bundles 215

Next we estimate the difference

uk,y(x) :=K
(N)
k,y (x)−(χK(N)

y ,Kk,x).

Since the scalar product in this expression is the Bergman projection,

Pk(χK
(N)
k,y )(x),

uk,y is the L2-minimal solution to the ∂̄-equation

∂̄uk,y = ∂̄(χK(N)
k,y ).

The right-hand side equals

(∂̄χ)K(N)
k,y +χ∂̄K(N)

k,y .

Since χ equals 1 near y, it follows from (2.7) and the explicit form of K(N)
k,y that the

first term is dominated by

e−δkek(φ( · )/2+φ(y)/2).

The second term vanishes identically in the analytic case. In the smooth case ∂̄K(N)
k

can, by Proposition 2.7, be estimated by

O

(
1
k∞

)
ek(φ( · )/2+φ(y)/2).(3.8)

Altogether ∂̄uk,y is therefore bounded by (3.7), so by the Hörmander L2-estimate
we get that

‖uk,y‖2 ≤O

(
1
k∞

)
ekφ(y)/2.

But, since the estimate on ∂̄uk,y is even uniform, we get by a standard argument
involving the Cauchy integral formula in a ball around x of radius roughly k−1/2

that uk,y satisfies a pointwise estimate

|uk,y(x)|2 ≤O

(
1
k∞

)
ek(φ(y)/2+φ(x)/2).

Combining this estimate for uk,y(x) with (3.6) we finally get that

|K(N)
k,y (x)−Kk(y, x)|e−kφ(x)/2−kφ(y)/2 ≤O

(
1

kN+1

)
.(3.9)

Since Kk is Hermitian (i.e. Kk(x, y)=Kk(y, x)) this proves the proposition except
for the statement on convergence of derivatives.



216 Robert Berman, Bo Berndtsson and Johannes Sjöstrand

In the analytic case the convergence of derivatives is, by the Cauchy estimates,
an automatic consequence of the uniform convergence, since the kernels are holo-
morphic in x and ȳ. In the smooth case, we have that

∂̄K
(N)
k (x, z̄)=O

(
1
k∞

)
ek(φ( · )/2+φ(y)/2).

This implies that the Cauchy estimates still hold for the difference between Kk

and K
(N)
k , up to an error which is O(k−∞), and so we get the convergence of

derivatives even in the smooth case. �

Remark 3.2. The proof above actually shows that the asymptotic expansion
for the global Bergman kernel Kk(x, y) holds close to any point x which is in X(0)
(the open subset of X where the curvature form of φ is positive) and is such that
x satisfies the following global condition: for any given ∂̄-closed (0, 1)-form gk with
values in Lk supported in some fixed neighbourhood of x we may find sections uk
with values in Lk such that

∂̄uk = gk,(3.10)

on X and

‖uk‖kφ≤C‖gk‖kφ.(3.11)

After this paper was written this observation was used in [2] to obtain an asymptotic
expansion of Kk(x, y) on a certain subset of X(0) for any Hermitian line bundle
(L, φ) over a projective manifold X .
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Boston, MA, 1999.

6. Fefferman, C., The Bergman kernel and biholomorphic mappings of pseudoconvex
domains, Invent. Math. 26 (1974), 1–65.



A direct approach to Bergman kernel asymptotics for positive line bundles 217
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9. Hörmander, L., The Analysis of Linear Partial Differential Operators. III, Grundlehren

der Mathematischen Wissenschaften 274, Springer, Berlin–Heidelberg, 1985.
10. Keller, J., Asymptotique du noyau de Bergman généralisé sur une varieté de Kähler,
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15. Zelditch, S., Szegő kernels and a theorem of Tian, Int. Math. Res. Notices 1998 (1998),

317–331.

Robert Berman
Department of Mathematics
Chalmers University of Technology
SE-412 96 Göteborg
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