Skip to main content
Log in

Phase Behavior of Whey Protein Aggregates/κ-Carrageenan Mixtures: Experiment and Theory

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The phase separation behavior of whey protein isolate (WPI) aggregates and κ-carrageenan (κ-car) mixtures was studied using the Vrij's theory and image analysis method. The intrinsic parameter (molecular mass and radius of gyration) for κ-car and the WPI aggregates was determined using intrinsic viscosity and reduced viscosity of each biopolymer. Confocal microscopy observations revealed the appearance of protein aggregate domains when phase separation occurred, with microgel droplets of WPI included in a continuous κ-car phase. The occurrence of aggregate droplet has not been reported before for the phase-separating WPI/κ-car mixtures. So far, network emulsion-like microstructures have been observed with WPI in a network structure. By using different WPI concentrations (4% or 6%), the microstructure of the systems changes while increasing the κ-car concentration. The size of the microgels (1–2.5 μm) depends on both κ-car and WPI concentration. Confocal microscopy combined with image analysis (method of the variance) was used effectively as objective means to determine the phase boundary of the phase-separating systems. Additional information on the depletion layer thickness, Δ, was obtained using self-consistent field theory. The results show that Δ has a constant value of 80.5 nm for \( {{\hbox{c}}_{\kappa {\rm{ - car}}}} \prec {\hbox{2 g}}/{l} \), in agreement with ∆ ≈ R g (radius of gyration). Above this concentration, Δ decreases as a function of κ-car concentration. The experimental phase boundary was well predicted using Vrij's theory. This work showed a new approach to generate phase diagrams (e.g., under shear) of phase-separating systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.W. Edelman, Ph.D. thesis, Wageningen University, The Netherlands, 2003

  2. S.L. Turgeon, M. Beaulieu, C. Schmitt, C. Sanchez, Curr. Opin. Colloid Interface Sci. 8(4–5), 401 (2003)

    Article  CAS  Google Scholar 

  3. C.G. de Kruif, R. Tuinier, Food Hydrocoll. 15(4–6), 555 (2001)

    Article  Google Scholar 

  4. A. Vrij, Pure Appl. Chem. 48, 471–483 (1976)

    Article  CAS  Google Scholar 

  5. V.Y. Grinberg, V.B. Tolstoguzov, Food Hydrocoll. 11, 145–158 (1997)

    Article  CAS  Google Scholar 

  6. V. Tolstoguzov, Crit. Rev. Biotechnol. 22(2), 89–174 (2002)

    Article  CAS  Google Scholar 

  7. M.M. Ould Eleya, S.L. Turgeon, Food Hydrocoll. 14, 29–40 (2000)

    Article  CAS  Google Scholar 

  8. P. Aymard, M.A.K. Williams, A.H. Clark, I.T. Norton, Langmuir 16(19), 7383–7391 (2000)

    Article  CAS  Google Scholar 

  9. V. Tolstoguzov, Food Hydrocoll. 17(1), 1 (2003)

    Article  CAS  Google Scholar 

  10. S. Bourriot, C. Garnier, J.L. Doublier, Carbohydr. Polym. 40(2), 145 (1999)

    Article  CAS  Google Scholar 

  11. C. Schorsch, M.G. Jones, I.T. Norton, Food Hydrocoll. 13(2), 89 (1999)

    Article  CAS  Google Scholar 

  12. R. Tuinier, E. Ten Grotenhuis, C. Holt, P.A. Timmins, C.G. de Kruif, Phys. Rev. E 60, 848–856 (1999)

    Article  CAS  Google Scholar 

  13. C.G. de Kruif, Langmuir 8(12), 2932–2937 (1992)

    Article  Google Scholar 

  14. R. Tuinier, J.K.G. Dhont, C.G. de Kruif, Langmuir 16(4), 1497–1507 (2000)

    Article  CAS  Google Scholar 

  15. N. Mahmoudi, S. Mehalebi, T. Nicolai, D. Durant, A. Riaublanc, J. Agric. Food Chem. 55, 3104–3111 (2007)

    Article  CAS  Google Scholar 

  16. P. Croguennoc, D. Durand, T. Nicolai, Langmuir 17, 4372–4379 (2001)

    Article  CAS  Google Scholar 

  17. P. Croguennoc, D. Durand, T. Nicolai, Langmuir 17, 4380–4385 (2001)

    Article  CAS  Google Scholar 

  18. J. Traube, Gummi Zeitung 39, 434–435 (1925)

    Google Scholar 

  19. C.F. Vester, Kolloid-Z 84, 63 (1938)

    Article  CAS  Google Scholar 

  20. S. Asakura, F. Oosawa, J. Polym. Sci. 33, 183–192 (1958)

    Article  CAS  Google Scholar 

  21. H. De Hek, A. Vrij, J. Colloid. Interface Sci. 84(2), 409 (1981)

    Article  Google Scholar 

  22. H.N.W. Lekkerkerker, W.C.K. Poon, P.N. Pusey, A. Stroobants, P.B. Warren, Europhys. Lett. 20, 559 (1992)

    Article  CAS  Google Scholar 

  23. W.C.K. Poon, P.N. Pusey, in Observation, Prediction and Simulation of Phase Transitions in Complex Fluids, ed. by M. Baus, L.F. Rull, J-P. Ryckaert (Kluwer Academic, Dordrecht, 1995), p. 3

  24. P.W. de Bont, G.M.P. van Kempen, R. Vreeker, Food Hydrocoll. 16(2), 127 (2002)

    Article  Google Scholar 

  25. S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255–1256 (1954)

    CAS  Google Scholar 

  26. Q. Wang, J.A.P.P. Dijk, T. Odijk, J.A.M. Smit, Biomacromolecules 2, 1080–1088 (2001)

    Article  CAS  Google Scholar 

  27. P. van der Schoot, Macromolecules 31(14), 4635–4638 (1998)

    Article  Google Scholar 

  28. D.A. McQuarrie, in Statistical Mechanics (Harper & Row, New York, 1976), Chap 21, p. 85

  29. R. Tuinier, C.G. de Kruif, J. Chem. Phys. 110, 9296–9304 (1999)

    Article  CAS  Google Scholar 

  30. J. Lyklema, in Fundamentals of Colloid and Interface Science (Academic, New York, 1991), Chap. 2, p. 1–17

  31. P.G. De Gennes, Macromolecules 14(6), 1637–1644 (1981)

    Article  Google Scholar 

  32. M. Daoud, J.P. Cotton, B. Farnoux et al., Macromolecules 8(6), 804–818 (1975)

    Article  CAS  Google Scholar 

  33. J.M.H.M. Scheutjens, G.J. Fleer, J. Phys. Chem. 83(12), 1619–1635 (1979)

    Article  Google Scholar 

  34. J.M.H.M. Scheutjens, G.J. Fleer, J. Phys. Chem. 84(2), 178–190 (1980)

    Article  CAS  Google Scholar 

  35. V.W. Kuhn, Kolloid-Z 68, 2 (1934)

    Article  CAS  Google Scholar 

  36. P.J. Flory, in Principles of Polymer Chemistry (Cornell University Press, New York, 1953), p. 493–495

  37. G.L. Fleer, J.M.H.M. Scheutjens B. Vincent, in Segment Density Profiles of Adsorbed Polymers. ASC Symposium. Ser 1984. 240, p. 147

  38. J. Weigl, W. Yaphe, Can. J. Microbiol. 12, 939–947 (1966)

    Article  CAS  Google Scholar 

  39. B. Jähne, in Practical Handbook on Image Processing for Scientific (CRC Press, Boca Raton, FL, 1997), p. 61

  40. M.G. Kendall, A. Stuart, in Advanced Theory of Statistics (Charles Griffin, New York, 1997), p. 33

  41. C.W. Macosko, in Rheology Principal Measurements and Applications (New York, 1994): VCH

  42. M.A. de la Fuente, Y. Hemar, H. Singh, Food Chem. 86(1), 1 (2004)

    Article  Google Scholar 

  43. S. Gaaloul, S.L. Turgeon, M. Corredig, Food Biophysics 4, 13–22 (2009)

    Article  Google Scholar 

  44. X.J. Leng, S.L. Turgeon, Food Hydrocoll. 21(7), 1014 (2007)

    Article  CAS  Google Scholar 

  45. P. Walstra, in Physical Chemistry of Foods (Marcel Dekker, 2003), p. 99

  46. T.J.M. Jeurnink, C.G. de Kruif, J. Dairy Sci. 60, 139–150 (1993)

    Google Scholar 

  47. G.K. Batchelor, J. Fluid Mech. 83, 97–117 (1977)

    Article  CAS  Google Scholar 

  48. H. Cichocki, B.U. Felderhof, J. Chem. Phys. 89, 3705–3709 (1988)

    Article  CAS  Google Scholar 

  49. S. Bourriot, C. Garnier, J.-L. Doublier, Int. Dairy J. 9(3–6), 353 (1999)

    Article  CAS  Google Scholar 

  50. S. Gaaloul, S. L. Turgeon, M. Corredig, in 14th Gums and Stabilisers for the food industry conference, ed. by P.A. Williams and G.O. Phillips, 469–475 (2007)

  51. S. Gaaloul, S.L. Turgeon, M. Corredig, Food Hydrocoll 23(5), 1243–1252 (2009)

    Article  CAS  Google Scholar 

  52. P.R. Sperry, J. Colloid Interface Sci. 99(1), 97 (1984)

    Article  CAS  Google Scholar 

  53. K. Baussay, D. Durant, T. Nicolai, J. Colloid Interface Sci. 304, 335–341 (2006)

    Article  CAS  Google Scholar 

  54. V. Tolstoguzov, Carbohydr. Polym. 54(3), 371 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by NSERC and Parmalat Canada. Authors would like to thank Degussa France for donating the polysaccharide samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie L. Turgeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaaloul, S., Turgeon, S.L. & Corredig, M. Phase Behavior of Whey Protein Aggregates/κ-Carrageenan Mixtures: Experiment and Theory. Food Biophysics 5, 103–113 (2010). https://doi.org/10.1007/s11483-010-9150-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-010-9150-7

Keywords

Navigation