Skip to main content
Log in

Effect of Cooling and Heating Rates on Polymorphic Transformations and Gelation of Tripalmitin Solid Lipid Nanoparticle (SLN) Suspensions

  • Special Issue Article
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Solid lipid nanoparticle (SLN) suspensions undergo a phase transition from the α- to β-polymorphic forms, which is accompanied by particle aggregation and gel formation. These processes are both time and temperature dependent, and so it is important to study the impact of cooling rates (CRs) and heating rates (HRs) on polymorphic transformations, particle aggregation, and gelation. Rheology measurements indicated that the temperature where gelation was first observed during cooling (T gel) decreased with increasing CRs, with SLN suspensions remaining fluid at HR ≥ 5 °C/min. On the other hand, the temperature where gelation was first observed during heating of stable SLN suspensions increased with increasing HRs: 18, 24, 31, and 45 °C at 2, 5, 10, and 20 °C/min, respectively. When the melted SLN suspensions were cooled again, two exothermic peaks were observed in the differential scanning calorimetry scans at 39 (which was attributed to coalesced oil) and 19 °C (which was attributed to stable SLN). With increasing CR, the enthalpy of the coalescence peak (ΔH CO) decreased, while that of the supercooled SLN (ΔH SLN) increased. With increasing HR, ΔH CO decreased and ΔH SLN increased, with no coalescence being observed at HR ≥ 10 °C/min. These results show that increasing the CRs or HRs retard the α→β polymorphic transformation, which increased the stability of SLN against aggregation and retarded gelation. In addition, this study shows that the careful selection of HRs and CRs is required to examine polymorphic transformations and the stability of SLN suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.M. Kris-Etherton, W.S. Harris, L.J. Appel, Circulation 106(21), 2747–2757 (2002)

    Article  Google Scholar 

  2. P.M. Kris-Etherton, K.D. Hecker, A. Bonanome et al., Am. J. Med. 113(Suppl 9B), 71S–88S (2002)

    Article  CAS  Google Scholar 

  3. J.H. Weisburger, Eur. J. Cancer Prev. 11(S2), 1–7 (2002)

    Google Scholar 

  4. R.H. Müller, W. Mehnert, J.S. Lucks et al., Eur. J. Pharm. Biopharm. 41, 62–69 (1995)

    Google Scholar 

  5. A.J. Almeida, E. Souto, Adv. Drug Deliv. Rev. 59(6), 478–490 (2007)

    Article  CAS  Google Scholar 

  6. S.A. Wissing, O. Kayser, R.H. Müller, Adv. Drug Deliv. Rev. 56(9), 1257–1272 (2004)

    Article  CAS  Google Scholar 

  7. P.M. Bummer, Crit. Rev. Ther. Drug Carrier Syst. 21(1), 1–20 (2004)

    Article  CAS  Google Scholar 

  8. W. Mehnert, K. Mader, Adv. Drug Deliv. Rev. 47(2–3), 165–196 (2001)

    Article  CAS  Google Scholar 

  9. R.H. Müller, M. Radtke, S.A. Wissing, Adv. Drug Deliv. Rev. 54(Suppl 1), S131–S155 (2002)

    Article  Google Scholar 

  10. J. Weiss, T. Helgason, D.J. McClements, K. Kristbergsson, E. Decker, T.S. Awad, Food Biophys. (2008 in press)

  11. A.A. Attama, C.C. Muller-Goymann, Int. J. Pharm. 334(1–2), 179–189 (2007)

    Article  CAS  Google Scholar 

  12. C. Himawan, V.M. Starov, A.G.F. Stapley, Adv. Colloid Interface Sci. 122(1–3), 3–33 (2006)

    Article  CAS  Google Scholar 

  13. R.H. Müller, K. Mader, S. Gohla, Eur. J. Pharm. Biopharm. 50(1), 161–177 (2000)

    Article  Google Scholar 

  14. E. Dickinson, D.J. McClements, M.J.W. Povey, J. Colloid Interface Sci. 142(1), 103–110 (1991)

    Article  CAS  Google Scholar 

  15. D.J. McClements, Food Emulsions: Principles, Practice, and Techniques, 2nd edn. (CRC, Boca Raton, 2005)

    Google Scholar 

  16. D.J. McClements, E. Dickinson, S.R. Dungan, J.E. Kinsella, J.G. Ma, M.J.W. Povey, J. Colloid Interface Sci. 160(2), 293–297 (1993)

    Article  CAS  Google Scholar 

  17. J.N. Coupland, Curr. Opin. Colloid Interface Sci. 7(5–6), 445–450 (2002)

    Article  CAS  Google Scholar 

  18. P. Ahlin, J. Kristl, J. Smid-Korbar, Acta Pharm. 48, 257–267 (1998)

    Google Scholar 

  19. H. Bunjes, M.H. Koch, J. Control. Release 107(2), 229–243 (2005)

    Article  CAS  Google Scholar 

  20. H. Bunjes, M.H. Koch, K. Westesen, J. Pharm. Sci. 92(7), 1509–1520 (2003)

    Article  CAS  Google Scholar 

  21. B. Siekmann, K. Westesen, Colloids Surf. B: Biointerfaces 3(3), 159–175 (1994)

    Article  CAS  Google Scholar 

  22. K. Westesen, B. Siekmann, Int. J. Pharm. 151(1), 35–45 (1997)

    Article  CAS  Google Scholar 

  23. C. Freitas, R.H. Müller, Int. J. Pharm. 168(2), 221–229 (1998)

    Article  CAS  Google Scholar 

  24. C. Freitas, R.H. Müller, Eur. J. Pharm. Biopharm. 47(2), 125–132 (1999)

    Article  CAS  Google Scholar 

  25. H. Bunjes, F. Steiniger, W. Richter, Langmuir 23(7), 4005–4011 (2007)

    Article  CAS  Google Scholar 

  26. S. Hatziantoniou, G. Deli, Y. Nikas, C. Demetzos, G.T. Papaioannou, Micron 38(8), 819–823 (2007)

    Article  CAS  Google Scholar 

  27. M.A. Schubert, M. Harms, C.C. Müller-Goymann, Eur. J. Pharm. Sci. 27(2–3), 226–236 (2006)

    Article  CAS  Google Scholar 

  28. M.A. Schubert, C.C. Müller-Goymann, Eur. J. Pharm. Biopharm. 61(1–2), 77–86 (2005)

    Article  CAS  Google Scholar 

  29. T. Helgason, T.S. Awad, E. Decker, K. Kristbergsson, D.J. McClements, J. Weiss, J Am Oil Chem Soc (2008 in press)

  30. M.J.W. Povey, T.S. Awad, R. Hue, Y. Ding, ed. by E. Dickinson, M. Leser. Food Colloids: Self-Assembly and Material Science (the Royal Society of Chemistry, Cambridge, UK, 2007), pp. 399–412

    Google Scholar 

  31. T.S. Awad, K. Sato, Colloids Surf. B: Biointerfaces 25(1), 45–53 (2002)

    Article  CAS  Google Scholar 

  32. T.S. Awad, K. Sato, J. Am. Oil Chem. Soc. 78(8), 837–842 (2001)

    Article  CAS  Google Scholar 

  33. T.S. Awad, K. Sato, ed. by A.G. Marangoni, S. Narine. Physical Properties of Lipids (Marcel Dekker, New York, 2002), pp. 37–62

    Google Scholar 

  34. T.S. Awad, Food Res. Int. 37(6), 579–586 (2004)

    Article  CAS  Google Scholar 

  35. K. Golemanov, S. Tcholakova, N.D. Denkov, T. Gurkov, Langmuir 22(8), 3560–3569 (2006)

    Article  CAS  Google Scholar 

  36. H. Bunjes, K. Westesen, M.H.J. Koch, Int. J. Pharm. 129, 159–173 (1996)

    Article  CAS  Google Scholar 

  37. H. Bunjes, M.H.J. Koch, K. Westesen, Langmuir 16, 5234–5241 (2000)

    Article  Google Scholar 

  38. T. Unruh, H. Bunjes, K. Westesen, M.H.J. Koch, J. Phys. Chem. B 103, 10373–10377 (1999)

    Article  CAS  Google Scholar 

  39. K. Boode, C. Bisperink, P. Walstra, Colloids Surf. 61, 55–74 (1991)

    Article  CAS  Google Scholar 

  40. K. Boode, P. Walstra, Colloids Surf. A: Physicochem. Eng. Asp. 81, 121–137 (1993)

    Article  CAS  Google Scholar 

  41. K. Boode, P. Walstra, A.E.A. Degrootmostert, Colloids Surf. A: Physicochem. Eng. Asp. 81, 139–151 (1993)

    Article  CAS  Google Scholar 

  42. P. Walstra, Physical Chemistry of Foods (Marcel Decker, New York, NY., 2003)

    Google Scholar 

  43. P. Thanasukarn, R. Pongsawatmanit, D.J. McClements, Colloids Surf. A: Physicochem. Eng. Asp. 246(1–3), 49–59 (2004)

    Article  CAS  Google Scholar 

  44. P. Thanasukarn, R. Pongsawatmanit, D.J. McClements, Food Hydrocoll. 18(6), 1033–1043 (2004)

    Article  CAS  Google Scholar 

  45. S.A. Vanapalli, J. Palanuwech, J.N. Coupland, Colloids Surf. A: Physicochem. Eng. Asp. 204(1–3), 227–237 (2002)

    Article  CAS  Google Scholar 

  46. S.A. Vanapalli, J.N. Coupland, Food Hydrocoll. 15(4–6), 507–512 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This grant was supported by USDA CSREES Hatch grants (MAS 0911 and MAS 831) and grants by the USDA National Research Initiative Programs (Award number 2005-01357). Additional financial support was provided by the Leifur Eiriksson Foundation, Hrafnkellssjodur, and Rannsoknarnamsjodur, all located in Reykjavik, Iceland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek S. Awad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awad, T.S., Helgason, T., Kristbergsson, K. et al. Effect of Cooling and Heating Rates on Polymorphic Transformations and Gelation of Tripalmitin Solid Lipid Nanoparticle (SLN) Suspensions. Food Biophysics 3, 155–162 (2008). https://doi.org/10.1007/s11483-008-9057-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-008-9057-8

Keywords

Navigation