Skip to main content
Log in

Near-Infrared Fluorescence Enhancement Using Silver Island Films

  • Regular Manuscript
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Near-infrared (near-IR) excitation produces little background signal from biological molecules, making near-IR fluorescence technology highly useful in proteomic and genomic applications. To increase the emissions of near-IR fluorophores, we examined the use of metal-enhanced fluorescence on these longer wavelength dyes. IRDye®700- and IRDye®800-labeled DNA oligonucleotides and proteins were spotted onto silver island film (SIF)-coated glass slides, and analyzed using a LI-COR Odyssey® IR imaging system. We observed more than 18-fold enhancement of the IRDye®700 and 15-fold enhancement of the IRDye®800-labeled DNA oligonucleotides when spotted on SIF-coated surfaces compared with uncoated surfaces. We also demonstrated that the enhanced emissions produced on the SIF-coated slides remained linear over several orders of magnitude, that the emissions remained reproducible across a slide surface, and that the SIF-coated slide remained effective at enhancing emissions after 9 months of storage. Our results indicate that SIF-coated glass slides are effective at enhancing near-IR fluorescence and could be developed into an effective tool to aid in molecular biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    Article  CAS  Google Scholar 

  2. Randolph JB, Waggoner AS (1997) Stability, specificity and fluorescence brightness of multiply-labeled fluorescent DNA probes. Nucleic Acids Res 25(14):2923–2929

    Article  CAS  Google Scholar 

  3. Kaiser RJ, MacKellar SL, Vinayak RS, Sanders JZ, Saavedra RA, Hood LE (1989) Specific-primer-directed DNA sequencing using automated fluorescence detection. Nucleic Acids Res 17(15):6087–6102

    CAS  Google Scholar 

  4. Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, Heiner C, Kent SB, Hood LE (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321(6071):674–679

    Article  CAS  Google Scholar 

  5. Brumbaugh JA, Middendorf LR, Grone DL, Ruth JL (1988) Continuous, on-line DNA sequencing using oligodeoxynucleotide primers with multiple fluorophores. Proc Natl Acad Sci USA 85(15):5610–5614

    Article  CAS  Google Scholar 

  6. Trevisiol E, Renard A, Defrancq E, Lhomme J (2000) Fluorescent labelling of oligodeoxyribonucleotides by the oxyamino-aldehyde coupling reaction. Nucleosides Nucleotides Nucleic Acids 19(9):1427–1439

    CAS  Google Scholar 

  7. Yu H, Chao J, Patek D, Mujumdar R, Mujumdar S, Waggoner AS (1994) Cyanine dye dUTP analogs for enzymatic labeling of DNA probes. Nucleic Acids Res 22(15):3226–3232

    CAS  Google Scholar 

  8. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599):1759–1762

    Article  CAS  Google Scholar 

  9. Frey PA, Frey TG (1999) Synthesis of undecagold labeling compounds and their applications in electron microscopic analysis of multiprotein complexes. J Struct Biol 127(2):94–100

    Article  CAS  Google Scholar 

  10. Schultz S, Smith DR, Mock JJ, Schultz DA (2000) Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci USA 97(3):996–1001

    Article  CAS  Google Scholar 

  11. Cognet L, Tardin C, Boyer D, Choquet D, Tamarat P, Lounis B (2003) Single metallic nanoparticle imaging for protein detection in cells. Proc Natl Acad Sci USA 100(20):11350–11355

    Article  CAS  Google Scholar 

  12. Seydel C (2003) Quantum dots get wet. Science 300(5616):80–81

    Article  CAS  Google Scholar 

  13. Lakowicz JR (1999) Principles of fluorescence spectroscopy 2nd ed. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  14. Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298(1):1–24

    Article  CAS  Google Scholar 

  15. Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62

    Article  CAS  Google Scholar 

  16. Aslan K, Lakowicz JR, Geddes CD (2005) Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr Opin Chem Biol 9(5):538–544

    Article  CAS  Google Scholar 

  17. Lakowicz JR, Gryczynski I, Malicka J, Gryczynski Z, Geddes CD (2002) Enhanced and localized multiphoton excited fluorescence near metallic silver islands: metallic islands can increase probe photostability. J Fluoresc 12(3/4):299–302

    Article  CAS  Google Scholar 

  18. Lakowicz JR, Shen Y, D’Auria S, Malicka J, Fang J, Gryczynski Z, Gryczynski I (2002) Radiative decay engineering. 2. Effects of SIFs on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 301(2):261–277

    Article  CAS  Google Scholar 

  19. Lakowicz JR, Malicka J, Gryczynski I (2003) Increased intensities of YOYO-1-labeled DNA oligomers near silver particles. Photochem Photobiol 77(6):604–607

    Article  CAS  Google Scholar 

  20. Malicka J, Gryczynski I, Geddes CD, Lakowicz JR (2003) Metal-enhanced emission from indocyanine green: a new approach to in vivo imaging. J Biomed Opt 8(3):472–478

    Article  CAS  Google Scholar 

  21. Malicka J, Gryczynski I, Gryczynski Z, Lakowicz JR (2003) Effects of fluorophore-to-silver distance on the emission of cyanine-dye-labeled oligonucleotides. Anal Biochem 315(1):57–66

    Article  CAS  Google Scholar 

  22. Malicka J, Gryczynski I, Maliwal BP, Fang J, Lakowicz JR (2003) Fluorescence spectral properties of cyanine dye labeled DNA near metallic silver particles. Biopolymers 72(2):96–104

    Article  CAS  Google Scholar 

  23. Aslan K, Huang J, Wilson GM, Geddes CD (2006) Metal-enhanced fluorescence-based RNA sensing. J Am Chem Soc 128(13):4206–4207

    Article  CAS  Google Scholar 

  24. Aslan K, Geddes CD (2006) Microwave-accelerated metal-enhanced fluorescence (MAMEF): application to ultra fast and sensitive clinical assays. J Fluoresc 16(1):3–8

    Article  CAS  Google Scholar 

  25. Aslan K, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date. Anal Bioanal Chem 382(4):926–933

    Article  CAS  Google Scholar 

  26. Lukomska J, Malicka J, Gryczynski I, Lakowicz JR (2004) Fluorescence enhancements on silver colloid coated surfaces. J Fluoresc 14(4):417–423

    Article  CAS  Google Scholar 

  27. Geddes CD, Parfenov A, Lakowicz JR (2003) Photodeposition of silver can result in metal-enhanced fluorescence. Appl Spectrosc 57(5):526–531

    Article  CAS  Google Scholar 

  28. Geddes CD, Parfenov A, Roll D, Gryczynski I, Malicka J, Lakowicz JR (2003) Silver fractal-like structures for metal-enhanced fluorescence: enhanced fluorescence intensities and increased probe photostabilities. J Fluoresc 13(3):267–276

    Article  CAS  Google Scholar 

  29. Jensen TR, Malinsky MD, Haynes CL, Van Duyne P (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem 104(45):10549–10556

    CAS  Google Scholar 

  30. Corrigan TD, Guo S, Phaneud RJ, Szmacinski H (2005) Enhanced fluorescence from periodic arrays of silver nanoparticles. J Fluoresc 15(5):777–784

    Article  CAS  Google Scholar 

  31. Gryczynski I, Malicka J, Gryczynski Z, Geddes CD, Lakowicz JR (2002) The CFS engineers the intrinsic radiative decay rate of low quantum yield fluorophores. J Fluoresc 12(1):1–13

    Article  Google Scholar 

  32. Malicka J, Gryczynski I, Fang J, Lakowicz JR (2003) Fluorescence spectral properties of cyanine dye-labeled DNA oligomers on surfaces coated with silver particles. Anal Biochem 317(2):136–146

    Article  CAS  Google Scholar 

  33. Olive DM (2004) Quantitative methods for the analysis of protein phosphorylation in drug development. Expert Rev Proteomics 1(3):327–341

    Article  CAS  Google Scholar 

  34. Middendorf LR, Amen J, Bruce RC, Draney D, DeGraff D, Gewecke J, Grone, P. Humphrey DL, Little G, Lugade A, Narayanan N, Oommen A, Osterman H, Peterson R, Rada J, Raghavachari R, Roemer SC (1998). In: Daehne S (Ed.) Near-Infrared Dyes for High Technology Applications. Kluwer Academic Publishers, pp. 21–54

  35. Shealy DB, Lipowska M, Lipowski J, Narayanan N, Sutter S, Strekowski L, Patonay G (1995) Synthesis, chromatographic separation, and characterization of near-infrared-labeled DNA oligomers for use in DNA sequencing. Anal Chem 67(2):247–251

    Article  CAS  Google Scholar 

  36. Middendorf LR, Bruce JC, Bruce RC, Eckles RD, Grone DL, Roemer SC, Sloniker GD, Steffens DL, Sutter SL, Brumbaugh JA et al (1992) Continuous, on-line DNA sequencing using a versatile infrared laser scanner/electrophoresis apparatus. Electrophoresis 13(8):487–494

    Article  CAS  Google Scholar 

  37. Malicka J, Gryczynski I, Lakowicz JR (2003) DNA hybridization assays using metal-enhanced fluorescence. Biochem Biophys Res Commun 306(1):213–218

    Article  CAS  Google Scholar 

  38. LI-COR (2006) Odyssey Infrared Imaging System: Users Guide Version 1.2, in www.licor.com: LI-COR, Inc.

  39. Middendorf LR, Bruce JC, Bruce RC, Eckles RD, Roemer SC, Sloniker GD (1993) A versatile infrared laser scanning/electrophoresis apparatus. Proc OE/LASE. Adv Fluoresc Sensing Technol 1885:423–434

    CAS  Google Scholar 

  40. Middendorf LR, Bruce RC, Brumbaugh JA, Grone DL, Jang G, Richterich P, Holtke HJ, Williams RJ, Peralta JM (1995) A two-dimensional infrared fluorescence scanner used for DNA analysis. Proc SPIE. Adv Fluoresc Sensing Technol II 2388:44–55

    CAS  Google Scholar 

  41. LI-COR (2006) Odyssey Infrared Imaging System: Users Guide Version 1.2: LI-COR Inc.

  42. Chowdhury MH (2006) Metal-enhanced chemiluminescence: radiating plasmons generated from chemically induced electronic excited states. Appl Phys Lett 88:173104

    Article  Google Scholar 

  43. Malicka J, Gryczynski I, Lakowicz JR (2003) Enhanced emission of highly labeled DNA oligomers near silver metallic surfaces. Anal Chem 75(17):4408–4414

    Article  CAS  Google Scholar 

  44. Pugh VJ, Szmacinski H, Moore WE, Geddes CD, Lakowicz JR (2003) Submicrometer spatial resolution of metal-enhanced fluorescence. Appl Spectrosc 57(12):1592–1598

    Article  CAS  Google Scholar 

  45. Lakowicz JR, Shen B, Gryczynski Z, D’Auria S, Gryczynski I (2001) Intrinsic fluorescence from DNA can be enhanced by metallic particles. Biochem Biophys Res Commun 286(5):875–879

    Article  CAS  Google Scholar 

  46. Lakowicz JR, Geddes CD, Gryczynski I, Malicka J, Gryczynski Z, Aslan K, Lukomska J, Matveeva E, Zhang J, Badugu R, Huang J (2004) Advances in surface-enhanced fluorescence. J Fluoresc 14(4):425–441

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH National Center for Research Resources, Small Business Innovation Research grant RR021785. We also thank the Center for Fluorescence Spectroscopy, which is supported by the National Center for Research Resources grant RR08119, for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon P. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J.P., Griffiths, M. & Boveia, V.R. Near-Infrared Fluorescence Enhancement Using Silver Island Films. Plasmonics 1, 103–110 (2006). https://doi.org/10.1007/s11468-006-9018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-006-9018-3

Keywords

Navigation