Skip to main content
Log in

Unprecedentedly rapid transport of single-file rolling water molecules

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The realization of rapid and unidirectional single-file water-molecule flow in nanochannels has posed a challenge to date. Here, we report unprecedentedly rapid unidirectional single-file water-molecule flow under a translational terahertz electric field, which is obtained by developing a Debye doublerelaxation theory. In addition, we demonstrate that all the single-file molecules undergo both stable translation and rotation, behaving like high-speed train wheels moving along a railway track. Independent molecular dynamics simulations help to confirm these theoretical results. The mechanism involves the resonant relaxation dynamics of H and O atoms. Further, an experimental demonstration is suggested and discussed. This work has implications for the design of high-efficiency nanochannels or smaller nanomachines in the field of nanotechnology, and the findings also aid in the understanding and control of water flow across biological nanochannels in biology-related research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. B. Sisan and S. Lichter, Solitons transport water through narrow carbon nanotubes, Phys. Rev. Lett. 112(4), 044501 (2014)

    Article  ADS  Google Scholar 

  2. C. B. Picallo, S. Gravelle, L. Joly, E. Charlaix, and L. Bocquet, Nanofluidic osmotic diodes: Theory and molecular dynamics simulations, Phys. Rev. Lett. 111(24), 244501 (2013)

    Article  ADS  Google Scholar 

  3. K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes, Science 306(5700), 1362 (2004)

    Article  ADS  Google Scholar 

  4. M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, and A. M. Mayes, Science and technology for water purification in the coming decades, Nature 452(7185), 301 (2008)

    Article  ADS  Google Scholar 

  5. A. Srivastava, O. N. Srivastava, S. Talapatra, R. Vajtai, and P. M. Ajayan, Carbon nanotube filters, Nat. Mater. 3(9), 610 (2004)

    Article  ADS  Google Scholar 

  6. Y. B. Chen, Y. H. Liu, Y. Zeng, W. Mao, L. Hu, Z. L. Mao, and H. Q. Xu, Optimal aspect ratio of endocytosed spherocylindrical nanoparticle, Front. Phys. 10(1), 116 (2015)

    Article  Google Scholar 

  7. C. Lee, C. Cottin-Bizonne, A. L. Biance, P. Joseph, L. Bocquet, and C. Ybert, Osmotic flow through fully permeable nanochannels, Phys. Rev. Lett. 112(24), 244501 (2014)

    Article  ADS  Google Scholar 

  8. G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414(6860), 188 (2001)

    Article  ADS  Google Scholar 

  9. X. J. Gong, J. Y. Li, H. Zhang, R. Z. Wan, H. J. Lu, S. Wang, and H. P. Fang, Enhancement of water permeation across a nanochannel by the structure outside the channel, Phys. Rev. Lett. 101(25), 257801 (2008)

    Article  ADS  Google Scholar 

  10. X. J. Gong, J. Y. Li, H. J. Lu, R. Z. Wan, J. C. Li, J. Hu, and H. P. Fang, A charge-driven molecular water pump, Nat. Nanotechnol. 2(11), 709 (2007)

    Article  ADS  Google Scholar 

  11. M. Ma, F. Grey, L. M. Shen, M. Urbakh, S. Wu, J. Z. Liu, Y. L. Liu, and Q. S. Zheng, Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction, Nat. Nanotechnol. 10(8), 692 (2015)

    Article  ADS  Google Scholar 

  12. Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X. Y. Jiang, Z. Y. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)

    Article  Google Scholar 

  13. G. X. Guo, L. Zhang, and Y. Zhang, Molecular dynamics study of the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers, Front. Phys. 10(2), 177 (2015)

    Article  Google Scholar 

  14. M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, Nanoscale hydrodynamics - enhanced flow in carbon nanotubes, Nature 438(7064), 44 (2005)

    Article  ADS  Google Scholar 

  15. J. K. Holt, H. G. Park, Y. M. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science 312(5776), 1034 (2006)

    Article  ADS  Google Scholar 

  16. J. A. Thomas and A. J. H. McGaughey, Water flow in carbon nanotubes: Transition to subcontinuum transport, Phys. Rev. Lett. 102(18), 184502 (2009)

    Article  ADS  Google Scholar 

  17. C. Lee, C. Cottin-Bizonne, A. L. Biance, P. Joseph, L. Bocquet, and C. Ybert, Osmotic flow through fully permeable nanochannels, Phys. Rev. Lett. 112(24), 244501 (2014)

    Article  ADS  Google Scholar 

  18. A. Kalra, S. Garde, and G. Hummer, Osmotic water transport through carbon nanotube membranes, Proc. Natl. Acad. Sci. USA 100(18), 10175 (2003)

    Article  ADS  Google Scholar 

  19. A. Ajdari and L. Bocquet, Giant amplification of interfacially driven transport by hydrodynamic slip: Diffusioosmosis and beyond, Phys. Rev. Lett. 96(18), 186102 (2006)

    Article  ADS  Google Scholar 

  20. M. J. Longhurst and N. Quirke, Temperature-driven pumping of fluid through single-walled carbon nanotubes, Nano Lett. 7(11), 3324 (2007)

    Article  ADS  Google Scholar 

  21. Q. L. Zhang, W. Z. Jiang, J. Liu, R. D. Miao, and N. Sheng, Water transport through carbon nanotubes with the radial breathing mode, Phys. Rev. Lett. 110(25), 254501 (2013)

    Article  ADS  Google Scholar 

  22. Y. Wang, Y. J. Zhao, and J. P. Huang, Giant pumping of single-file water molecules in a carbon nanotube, J. Phys. Chem. B 115(45), 13275 (2011)

    Article  Google Scholar 

  23. X. W. Meng, Y. Wang, Y. J. Zhao, and J. P. Huang, Gating of a water nanochannel driven by dipolar molecules, J. Phys. Chem. B 115(16), 4768 (2011)

    Article  Google Scholar 

  24. Z. Chi, C. Luo, and Y. Dai, Comment on “Electrical-driven transport of endohedral fullerene encapsulating a single water molecule, Phys. Rev. Lett. 113(11), 119601 (2014)

    Article  ADS  Google Scholar 

  25. K. F. Rinne, S. Gekle, D. J. Bonthuis, and R. R. Netz, Nanoscale pumping of water by AC electric fields, Nano Lett. 12(4), 1780 (2012)

    Article  ADS  Google Scholar 

  26. S. de Luca, B. D. Todd, J. S. Hansen, and P. J. Daivis, Electropumping of water with rotating electric fields, J. Chem. Phys. 138(15), 154712 (2013)

    Article  ADS  Google Scholar 

  27. X. P. Li, G. P. Kong, X. Zhang, and G. W. He, Pumping of water through carbon nanotubes by rotating electric field and rotating magnetic field, Appl. Phys. Lett. 103(14), 143117 (2013)

    Article  ADS  Google Scholar 

  28. J. Wong-ekkabut, M. S. Miettinen, C. Dias, and M. Karttunen, Static charges cannot drive a continuous flow of water molecules through a carbon nanotube, Nat. Nanotechnol. 5(8), 555 (2010)

    Article  ADS  Google Scholar 

  29. J. Su and H. X. Guo, Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field, ACS Nano 5(1), 351 (2011)

    Article  MathSciNet  Google Scholar 

  30. M. O. Jensen, E. Tajkhorshid, and K. Schulten, Electrostatic tuning of permeation and selectivity in aquaporin water channels, Biophys. J. 85(5), 2884 (2003)

    Article  ADS  Google Scholar 

  31. E. Tajkhorshid, P. Nollert, M. O. Jensen, L. J. W. Miercke, J. O’Connell, R. M. Stroud, and K. Schulten, Control of the selectivity of the aquaporin water channel family by global orientational tuning, Science 296(5567), 525 (2002)

    Article  ADS  Google Scholar 

  32. B. L. de Groot, T. Frigato, V. Helms, and H. Grubmuller, The mechanism of proton exclusion in the aquaporin-1 water channel, J. Mol. Biol. 333(2), 279 (2003)

    Article  Google Scholar 

  33. J. S. Hub and B. L. de Groot, Mechanism of selectivity in aquaporins and aquaglyceroporins, Proc. Natl. Acad. Sci. USA 105(4), 1198 (2008)

    Article  ADS  Google Scholar 

  34. B. L. de Groot and H. Grubmuller, Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF, Science 294(5550), 2353 (2001)

    Article  ADS  Google Scholar 

  35. J. P. Huang, K. W. Yu, and G. Q. Gu, Electrorotation of a pair of spherical particles, Phys. Rev. E 65(2), 021401 (2002)

    Article  ADS  Google Scholar 

  36. J. P. Huang, M. Karttunen, K. W. Yu, and L. Dong, Dielectrophoresis of charged colloidal suspensions, Phys. Rev. E 67(2), 021403 (2003)

    Article  ADS  Google Scholar 

  37. T. Meissner and F. J. Wentz, IEEE transactions on geoscience and remote sensing, Complex Dielectric Constant of Pure and Sea Water from Microwave Satellite Observations 42(9), 1836 (2004)

    Google Scholar 

  38. J. P. Huang and K. W. Yu, Enhanced nonlinear optical responses of materials: Composite effects, Phys. Rep. 431(3), 87 (2006)

    Article  ADS  Google Scholar 

  39. G. Chen, P. Tan, S. Chen, J. P. Huang, W. Wen, and L. Xu, Coalescence of pickering emulsion droplets induced by an electric field, Phys. Rev. Lett. 110(6), 064502 (2013)

    Article  ADS  Google Scholar 

  40. P. Debye, PolarMolecules, Chemical Catalog Company, New York, 1929

    Google Scholar 

  41. J. T. Kindt and C. A. Schmuttenmaer, Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy, J. Phys. Chem. 100(24), 10373 (1996)

    Article  Google Scholar 

  42. C. Ronne, L. Thrane, P.O. Astrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation, J. Phys. Chem. 107(14), 5319 (1997)

    Article  Google Scholar 

  43. H. J. Liebe, G. A. Hufford, and T. Manabe, A model for the complex permittivity of water at frequencies below 1 THz, J. Infrared Millim. Terahertz Waves 12(7), 659 (1991)

    Article  ADS  Google Scholar 

  44. R. Buchner, J. Barthel, and J. Stauber, The dielectric relaxation of water between 0 °C and 35 °C, Chem. Phys. Lett. 306(1–2), 57 (1999)

    Article  ADS  Google Scholar 

  45. Y. Huang, X. B. Wang, J. A. Tame, and R. Pethig, Electrokinetic behaviour of colloidal particles in travelling electric fields: Studies using yeast cells, J. Phys. D Appl. Phys. 26(9), 1528 (1993)

    Article  ADS  Google Scholar 

  46. S. Fiedler, S. G. Shirley, T. Schnelle, and G. Fuhr, G, Dielectrophoretic sorting of particles and cells in a microsystem, Anal. Chem. 70(9), 1909 (1998)

    Article  Google Scholar 

  47. M. S. Talary, J. P. H. Burt, J. A. Tame, and R. Pethig, Electromanipulation and separation of cells using travelling electric fields, J. Phys. D Appl. Phys. 29(8), 2198 (1996)

    Article  ADS  Google Scholar 

  48. U. Zimmermann, Electric field-mediated fusion and related electrical phenomena, Biochim. Biophys. Acta 694(3), 227 (1982)

    Article  Google Scholar 

  49. K. Falk, F. Sedlmeier, L. Joly, R. R. Netz, and L. Bocquet, Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction, Nano Lett. 10(10), 4067 (2010)

    Article  ADS  Google Scholar 

  50. B. Hess, et al., Gromacs-3.3, Department of Biophysical Chemistry, University of Groningen, Groningen, 2005

    Google Scholar 

  51. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79(2), 926 (1983)

    Article  ADS  Google Scholar 

  52. B. Mukherjee, P. K. Maiti, C. Dasgupta, and A. K. Sood, Strongly anisotropic orientational relaxation of water molecules in narrow carbon nanotubes and nanorings, ACS Nano 2(6), 1189 (2008)

    Article  Google Scholar 

  53. A. B. Farimani, Y. Wu, and N. R. Aluru, Rotational motion of a singlewater molecule in a buckyball, Phys. Chem. Chem. Phys. 15(41), 17993 (2013)

    Article  Google Scholar 

  54. J. Su and H. X. Guo, Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field, ACS Nano 5(1), 351 (2011)

    Article  MathSciNet  Google Scholar 

  55. H. P. Fang, R. Z. Wan, X. J. Gong, H. J. Lu, and S. Y. Li, Dynamics of single-file water chains inside nanoscale channels: physics, biological significance and applications, J. Phys. D 41(10), 103002 (2008)

    Article  ADS  Google Scholar 

  56. M. D. Ma, L. M. Shen, J. Sheridan, J. Z. Liu, C. Chen, and Q. S. Zheng, Friction of water slipping in carbon nanotubes, Phys. Rev. E 83(3), 36316 (2011)

    Article  ADS  Google Scholar 

  57. T. Kudernac, N. Ruangsupapichat, M. Parschau, B. Macia, N. Katsonis, S. R. Harutyunyan, K. H. Ernst, and B. L. Feringa, Electrically driven directional motion of a fourwheeled molecule on a metal surface, Nature 479(7372), 208 (2011)

    Article  ADS  Google Scholar 

  58. E. W. Frey, A. A. Gooding, S. Wijeratne, and C. H. Kiang, Understanding the physics of DNA using nanoscale singlemolecule manipulation, Front. Phys. 7(5), 576 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Qiu  (邱桐).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, T., Huang, JP. Unprecedentedly rapid transport of single-file rolling water molecules. Front. Phys. 10, 106102 (2015). https://doi.org/10.1007/s11467-015-0511-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-015-0511-z

Keywords

Navigation