Skip to main content
Log in

Applications of carbon nanotubes in high performance lithium ion batteries

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The development of lithium ion batteries (LIBs) relies on the improvement in the performance of electrode materials with higher capacity, higher rate capability, and longer cycle life. In this review article, the recent advances in Carbon nanotube (CNT) anodes, CNT-based composite electrodes, and CNT current collectors for high performance LIBs are concerned. CNT has received considerable attentions as a candidate material for the LIB applications. In addition to a possible choice for anode, CNT has been recognized as a solution in improving the performance of the state-of-the-art electrode materials. The CNT-based composite electrodes can be fabricated by mechanical or chemical approaches. Owing to the large aspect ratio and the high electrical conductivity, CNTs at very low loading can lead to an efficient conductive network. The excellent mechanical strength suggests the great potential in forming a structure scaffold to accommodate nano-sized electrode materials. Accordingly, the incorporation of CNTs will enhance the conductivity of the composite electrodes, mitigate the agglomeration problem, decrease the dependence on inactive binders, and improve the electrochemical properties of both anode and cathode materials remarkably. Freestanding CNT network can be used as lightweight current collectors to increase the overall energy density of LIBs. Finally, research perspectives for exploiting CNTs in high-performance LIBs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Armand and J. M. Tarascon, Nature, 2008, 451(7179): 652

    Article  ADS  Google Scholar 

  2. B. Dunn, H. Kamath, and J.-M. Tarascon, Science, 334(6058): 928

  3. J. M. Tarascon and M. Armand, Nature, 2001, 414(6861): 359

    Article  ADS  Google Scholar 

  4. M. S. Whittingham, Science, 1976, 192(4244): 1126

    Article  ADS  Google Scholar 

  5. M. S. Whittingham, Chem. Rev., 2004, 104(10): 4271

    Article  Google Scholar 

  6. K. Ozawa, Solid State Ion., 1994, 69(3–4): 212

    Article  Google Scholar 

  7. M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Adv. Mater., 1998, 10(10): 725

    Article  Google Scholar 

  8. H. Dai, Surface Science, 2002, 500(1–2): 218

    Article  ADS  Google Scholar 

  9. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Nature, 1996, 382(6586): 54

    Article  ADS  Google Scholar 

  10. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science, 2000, 287(5453): 637

    Article  ADS  Google Scholar 

  11. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature, 1996, 381(6584): 678

    Article  ADS  Google Scholar 

  12. R. Fong, U. v. Sacken, and J. R. Dahn, J. Electrochem. Soc., 1990, 137(7): 2009

    Article  Google Scholar 

  13. Z. X. Shu, R. S. McMillan, and J. J. Murray, J. Electrochem. Soc., 1993, 140(4): 922

    Article  Google Scholar 

  14. M. S. Dresselhaus and G. Dresselhaus, Adv. Phys., 1981, 30(2): 139

    Article  ADS  Google Scholar 

  15. N. A. Kaskhedikar and J. Maier, Adv. Mater., 2009, 21(25–26): 2664

    Article  Google Scholar 

  16. M. Armand and P. Touzain, Materials Science and Engineering, 1977, 31(0): 319

    Article  Google Scholar 

  17. L. Pauling, Proc. Natl. Acad. Sci. USA, 1966, 56(6): 1646

    Article  ADS  Google Scholar 

  18. J. R. Dahn, Phys. Rev. B, 1991, 44(17): 9170

    Article  ADS  Google Scholar 

  19. N. Kambe, M. S. Dresselhaus, G. Dresselhaus, S. Basu, A. R. McGhie, and J. E. Fischer, Materials Science and Engineering, 1979, 40(1): 1

    Article  Google Scholar 

  20. T. Ohzuku, Y. Iwakoshi, and K. Sawai, J. Electrochem. Soc., 1993, 140(9): 2490

    Article  Google Scholar 

  21. K. Persson, Y. Hinuma, Y. S. Meng, A. Van der Ven, and G. Ceder, Phys. Rev. B, 2010, 82(12)

    Google Scholar 

  22. R. C. Boehm and A. Banerjee, J. Chem. Phys., 1992, 96(2): 1150

    Article  ADS  Google Scholar 

  23. V. A. Nalimova, D. Guerard, M. Lelaurain, and O. V. Fateev, Carbon, 1995, 33(2): 177

    Article  Google Scholar 

  24. V. V. Avdeev, V. A. Nalimova, and K. N. Semenenko, High Pressure Res., 1990, 6(1): 11

    Article  ADS  Google Scholar 

  25. Y. Nagata, Y. Ohnishi, H. Hatori, M. Shiraishi, and T. Kajiyama, Kobunshi Ronbunshu, 1996, 53(5): 302

    Article  Google Scholar 

  26. A. Yasuda, N. Kawase, F. Banhart, W. Mizutani, T. Shimizu, and H. Tokumoto, J. Phys. Chem. B, 2002, 106(8): 1849

    Article  Google Scholar 

  27. R. E. Franklin, Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1951, 209(1097): 196

    Article  ADS  Google Scholar 

  28. K. Tatsumi, N. Iwashita, H. Sakaebe, H. Shioyama, S. Higuchi, A. Mabuchi, and H. Fujimoto, J. Electrochem. Soc., 1995, 142(3): 716

    Article  Google Scholar 

  29. N. Takami, A. Satoh, M. Hara, and T. Ohsaki, J. Electrochem. Soc., 1995, 142(2): 371

    Article  Google Scholar 

  30. A. Satoh, N. Takami, and T. Ohsaki, Solid State Ion., 1995, 80(3): 291

    Article  Google Scholar 

  31. A. Mabuchi, K. Tokumitsu, H. Fujimoto, and T. Kasuh, J. Electrochem. Soc., 1995, 142(4): 1041

    Article  Google Scholar 

  32. J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, Science, 1995, 270(5236): 590

    Article  ADS  Google Scholar 

  33. T. D. Tran, J. H. Feikert, X. Song, and K. Kinoshita, J. Electrochem. Soc., 1995, 142(10): 3297

    Article  Google Scholar 

  34. C. Kim, T. Fujino, K. Miyashita, T. Hayashi, M. Endo, and M. S. Dresselhaus, J. Electrochem. Soc., 2000, 147(4): 1257

    Article  Google Scholar 

  35. M. K. Song and K. T. No, J. Electrochem. Soc., 2004, 151(10): A1696

    Article  Google Scholar 

  36. T. Zheng, Y. Liu, E. W. Fuller, S. Tseng, U. v. Sacken, and J. R. Dahn, J. Electrochem. Soc., 1995, 142(8): 2581

    Article  Google Scholar 

  37. N. Takami, A. Satoh, T. Ohsaki, and M. Kanda, Electrochim. Acta, 1997, 42(16): 2537

    Article  Google Scholar 

  38. S. Iijima, Nature, 1991, 354(6348): 56

    Article  ADS  Google Scholar 

  39. V. Meunier, J. Kephart, C. Roland, and J. Bernholc, Phys. Rev. Lett., 2002, 88(7)

    Google Scholar 

  40. Z. Zhou, X. P. Gao, J. Yan, D. Y. Song, and M. Morinaga, Carbon, 2004, 42(12–13): 2677

    Article  Google Scholar 

  41. C. Garau, A. Frontera, D. Quinonero, A. Costa, P. Ballester, and P. M. Deya, Chem. Phys. Lett., 2003, 374(5–6): 548

    Article  ADS  Google Scholar 

  42. T. Kar, J. Pattanayak, and S. Scheiner, Journal of Physical Chemistry A, 2001, 105(45): 10397

    Article  ADS  Google Scholar 

  43. G. Maurin, C. Bousquet, F. Henn, P. Bernier, R. Almairac, and B. Simon, Chem. Phys. Lett., 1999, 312(1): 14

    Article  ADS  Google Scholar 

  44. A. S. Claye, J. E. Fischer, C. B. Huffman, A. G. Rinzler, and R. E. Smalley, J. Electrochem. Soc., 2000, 147(8): 2845

    Article  Google Scholar 

  45. B. Gao, C. Bower, J. D. Lorentzen, L. Fleming, A. Kleinhammes, X. P. Tang, L. E. McNeil, Y. Wu, and O. Zhou, Chem. Phys. Lett., 2000, 327(1–2): 69

    Article  ADS  Google Scholar 

  46. G. L. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin, Nature, 1998, 393(6683): 346

    Article  ADS  Google Scholar 

  47. E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, and F. Beguin, Carbon, 1999, 37(1): 61

    Article  Google Scholar 

  48. E. Frackowiak and F. Beguin, Carbon, 2002, 40(10): 1775

    Article  Google Scholar 

  49. B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu, and O. Zhou, Chem. Phys. Lett., 1999, 307(3–4): 153

    Article  ADS  Google Scholar 

  50. G. X. Wang, J. H. Ahn, J. Yao, M. Lindsay, H. K. Liu, and S. X. Dou, J. Power Sources, 2003, 119: 16

    Article  ADS  Google Scholar 

  51. C. Masarapu, V. Subramanian, H. W. Zhu, and B. Q. Wei, Advanced Functional Materials, 2009, 19(7): 1008

    Article  Google Scholar 

  52. S. B. Yang, H. H. Song, X. H. Chen, A. V. Okotrub, and L. G. Bulusheva, Electrochim. Acta, 2007, 52(16): 5286

    Article  Google Scholar 

  53. K. L. Jiang, Q. Q. Li, and S. S. Fan, Nature, 2002, 419(6909): 801

    Article  ADS  Google Scholar 

  54. K. L. Jiang, J. P. Wang, Q. Q. Li, L. A. Liu, C. H. Liu, and S. S. Fan, Adv. Mater., 2011, 23(9): 1154

    Article  Google Scholar 

  55. H. Zhang, G. P. Cao, and Y. S. Yang, Energy Environ. Sci., 2009, 2(9): 932

    Article  Google Scholar 

  56. S. H. Ng, J. Wang, Z. P. Guo, G. X. Wang, and H. K. Liu, Electrochim. Acta, 2005, 51(1): 23

    Article  Google Scholar 

  57. S. Y. Chew, S. H. Ng, J. Z. Wang, P. Novak, F. Krumeich, S. L. Chou, J. Chen, and H. K. Liu, Carbon, 2009, 47(13): 2976

    Article  Google Scholar 

  58. B. J. Landi, R. A. Dileo, C. M. Schauerman, C. D. Cress, M. J. Ganter, and R. P. Raffaelle, J. Nanosci. Nanotechnol., 2009, 9(6): 3406

    Article  Google Scholar 

  59. J. Chen, A. I. Minett, Y. Liu, C. Lynam, P. Sherrell, C. Wang, and G. G. Wallace, Adv. Mater., 2008, 20(3): 566

    Article  Google Scholar 

  60. G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, P. M. He, and W. Z. Li, J. Electrochem. Soc., 1999, 146(5): 1696

    Article  Google Scholar 

  61. J. Zhao, A. Buldum, J. Han, and J. Ping Lu, Phys. Rev. Lett., 2000, 85(8): 1706

    Article  ADS  Google Scholar 

  62. J. Li, C. Wu, and L. Guan, J. Phys. Chem. C, 2009, 113(42): 18431

    Article  Google Scholar 

  63. X. X. Wang, J. N. Wang, H. Chang, and Y. F. Zhang, Adv. Funct. Mater., 2007, 17(17): 3613

    Article  Google Scholar 

  64. D. T. Welna, L. T. Qu, B. E. Taylor, L. M. Dai, and M. F. Durstock, J. Power Sources, 2011, 196(3): 1455

    Article  Google Scholar 

  65. I. Lahiri, S. W. Oh, J. Y. Hwang, S. Cho, Y. K. Sun, R. Banerjee, and W. Choi, ACS Nano, 2010, 4(6): 3440

    Article  Google Scholar 

  66. Mukhopadhyay, I., N. Hoshino, S. Kawasaki, F. Okino, W. K. Hsu, and H. Touhara, J. Electrochem. Soc., 2002, 149(1): A39

    Article  Google Scholar 

  67. L. G. Bulusheva, A. V. Okotrub, A. G. Kurenya, H. K. Zhang, H. J. Zhang, X. H. Chen, and H. H. Song, Carbon, 2011, 49(12): 4013

    Article  Google Scholar 

  68. X. L. Li, F. Y. Kang, X. D. Bai, and W. Shen, Electrochem. Commun., 2007, 9(4): 663

    Article  Google Scholar 

  69. B. Jin, E. M. Jin, K. H. Park, and H. B. Gu, Electrochem. Commun., 2008, 10(10): 1537

    Article  Google Scholar 

  70. Liu, Y. J., X. H. Li, H. J. Guo, Z. X. Wang, W. J. Peng, Y. Yang, and R. F. Liang, J. Power Sources, 2008, 184(2): 522

    Article  Google Scholar 

  71. Y. Feng, Mater. Chem. Phys., 2010, 121(1–2): 302

    Article  Google Scholar 

  72. T. Muraliganth, A. V. Murugan, and A. Manthiram, J. Mater. Chem., 2008, 18(46): 5661

    Article  Google Scholar 

  73. G. P. Wang, Q. T. Zhang, Z. L. Yu, and M. Z. Qu, Solid State Ion., 2008, 179(7–8): 263

    Google Scholar 

  74. K. Sheem, Y. H. Lee, and H. S. Lim, J. Power Sources, 2006, 158(2): 1425

    Article  Google Scholar 

  75. J. H. Park, S. Y. Lee, J. H. Kim, S. Ahn, J. S. Park, and Y. U. Jeong, J. Solid State Electrochem., 2010, 14(4): 593

    Article  Google Scholar 

  76. J. H. Lee, G. S. Kim, Y. M. Choi, W. Il Park, J. A. Rogers, and U. Paik, J. Power Sources, 2008, 184(1): 308

    Article  Google Scholar 

  77. X. L. Li, F. Y. Kang, and W. C. Shen, Carbon, 2006, 44(7): 1334

    Article  Google Scholar 

  78. X. L. Li, F. Y. Kang, and W. C. Shen, Electrochem. Solid State Lett., 2006, 9(3): A126

    Article  Google Scholar 

  79. A. Varzi, C. Taubert, M. Wohlfahrt-Mehrens, M. Kreis, and W. Schutz, J. Power Sources, 2011, 196(6): 3303

    Article  Google Scholar 

  80. J. Y. Eom, J. W. Park, H. S. Kwon, and S. Rajendran, J. Electrochem. Soc., 2006, 153(9): A1678

    Article  Google Scholar 

  81. C. Sotowa, G. Origi, M. Takeuchi, Y. Nishimura, K. Takeuchi, I. Y. Jang, Y. J. Kim, T. Hayashi, Y. A. Kim, M. Endo, and M. S. Dresselhaus, ChemSusChem, 2008, 1(11): 911

    Article  Google Scholar 

  82. X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, and S. S. Fan, Adv. Mater., 2006, 18(12): 1505

    Article  Google Scholar 

  83. K. Liu, Y. H. Sun, L. Chen, C. Feng, X. F. Feng, K. L. Jiang, Y. G. Zhao, and S. S. Fan, Nano Lett., 2008, 8(2): 700

    Article  ADS  Google Scholar 

  84. K. Wang, Y. Wu, S. Luo, X. F. He, J. P. Wang, K. L. Jiang, and S. S. Fan, J. Power Sources, 2013, 233(1): 209

    Article  Google Scholar 

  85. S. Luo, K. Wang, J. Wang, K. Jiang, Q. Li, and S. Fan, Adv. Mater., 2012, 24(17): 2294

    Article  ADS  Google Scholar 

  86. M. D. Lima, S. Fang, X. Lepro, C. Lewis, R. Ovalle-Robles, J. Carretero-Gonzalez, E. Castillo-Martinez, M. E. Kozlov, J. Oh, N. Rawat, C. S. Haines, M. H. Haque, V. Aare, S. Stoughton, A. A. Zakhidov, and R. H. Baughman, Science, 2011, 331(6013): 51

    Article  ADS  Google Scholar 

  87. Z. Chen, D. Q. Zhang, X. L. Wang, X. L. Jia, F. Wei, H. X. Li, and Y. F. Lu, Adv. Mater., 2012, 24(15): 2030

    Article  Google Scholar 

  88. O. Toprakci, H. A. K. Toprakci, L.W. Ji, G. J. Xu, Z. Lin, and X.W. Zhang, ACS AppliedMaterials & Interfaces, 2012, 4(3): 1273

    Article  Google Scholar 

  89. P. G. Bruce, B. Scrosati, and J.-M. Tarascon, Angewandte Chemie International Edition, 2008, 47(16): 2930

    Article  Google Scholar 

  90. C. M. Hayner, X. Zhao, and H. H. Kung, Annual Review of Chemical and Biomolecular Engineering, 3(1): 445

  91. S.-D. Seo, G.-H. Lee, A.-H. Lim, K.-M. Min, J.-C. Kim, H.-W. Shim, K.-S. Park, and D.-W. Kim, RSC Advances, 2(8): 3315

  92. W. X. Chen, J. Y. Lee, and Z. Liu, Electrochem. Commun., 2002, 4(3): 260

    Article  MathSciNet  Google Scholar 

  93. M. S. Park, S. A. Needham, G. X. Wang, Y. M. Kang, J. S. Park, S. X. Dou, and H. K. Liu, Chem. Mat., 2007, 19(10): 2406

    Article  Google Scholar 

  94. O. Crosnier, T. Brousse, X. Devaux, P. Fragnaud, and D. M. Schleich, J. Power Sources, 2001, 94(2): 169

    Article  ADS  Google Scholar 

  95. J. O. Besenhard, J. Yang, and M. Winter, J. Power Sources, 1997, 68(1): 87

    Article  ADS  Google Scholar 

  96. T. P. Kumar, R. Ramesh, Y. Y. Lin, and G. T. K. Fey, Electrochem. Commun., 2004, 6(6): 520

    Article  Google Scholar 

  97. Y. Wang, and J. Y. Lee, Angew. Chem.-Int. Edit., 2006, 45(42): 7039

    Article  Google Scholar 

  98. L. Huang, J.-S. Cai, Y. He, F.-S. Ke, and S.-G. Sun, Electrochem. Commun., 2009, 11(5): 950

    Article  Google Scholar 

  99. K. D. Kepler, J. T. Vaughey, and M. M. Thackeray, Electrochem. Solid-State Lett., 1999, 2(7): 307

    Article  Google Scholar 

  100. C. K. Chan, R. N. Patel, M. J. O’Connell, B. A. Korgel, and Y. Cui, ACS Nano, 2010, 4(3): 1443

    Article  Google Scholar 

  101. C. Martin, O. Crosnier, R. Retoux, D. Belanger, D. M. Schleich, and T. Brousse, Adv. Funct. Mater., 2011, 21(18): 3524

    Article  Google Scholar 

  102. G. Chen, Z. Y. Wang, and D. G. Xia, Chem. Mat., 2008, 20(22): 6951

    Article  Google Scholar 

  103. Z. H. Wen, Q. Wang, Q. Zhang, and J. H. Li, Adv. Funct. Mater., 2007, 17(15): 2772

    Article  Google Scholar 

  104. L. Noerochim, J. Z. Wang, S. L. Chou, H. J. Li, and H. K. Liu, Electrochim. Acta, 2010, 56(1): 314

    Article  Google Scholar 

  105. H. X. Zhang, C. Feng, Y. C. Zhai, K. L. Jiang, Q. Q. Li, and S. S. Fan, Adv. Mater., 2009, 21(22): 2299

    Article  Google Scholar 

  106. J. Xie and V. K. Varadan, Mater. Chem. Phys., 2005, 91(2–3): 274

    Article  Google Scholar 

  107. G. M. An, N. Na, X. R. Zhang, Z. J. Miao, S. D. Miao, K. L. Ding, and Z. M. Liu, Nanotechnology, 2007, 18(43)

    Google Scholar 

  108. Y. B. Fu, R. B. Ma, Y. Shu, Z. Cao, and X. H. Ma, Mater. Lett., 2009, 63(22): 1946

    Article  Google Scholar 

  109. G. D. Du, C. Zhong, P. Zhang, Z. P. Guo, Z. X. Chen, and H. K. Liu, Electrochim. Acta, 2010, 55(7): 2582

    Article  Google Scholar 

  110. C. H. Xu, J. Sun, and L. Gao, J. Phys. Chem. C, 2009, 113(47): 20509

    Article  Google Scholar 

  111. Z. Y. Wang, G. Chen, and D. G. Xia, J. Power Sources, 2008, 184(2): 432

    Article  Google Scholar 

  112. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Nature, 2000, 407(6803): 496

    Article  ADS  Google Scholar 

  113. J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacin, Adv. Mater., 2010, 22(35): E170

    Article  Google Scholar 

  114. C. M. Ban, Z. C. Wu, D. T. Gillaspie, L. Chen, Y. F. Yan, J. L. Blackburn, and A. C. Dillon, Adv. Mater., 2010, 22(20): E145

    Article  Google Scholar 

  115. A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, and P. M. Ajayan, Nano Lett., 2009, 9(3): 1002

    Article  ADS  Google Scholar 

  116. F. Teng, S. Santhanagopalan, and D. D. Meng, Solid State Sci., 2010, 12(9): 1677

    Article  ADS  Google Scholar 

  117. Z. Wang, D. Luan, S. Madhavi, Y. Hu, and X. W. Lou, Energy Environ. Sci., 2012, 5(1): 5252

    Article  Google Scholar 

  118. Y. He, L. Huang, J. S. Cai, X. M. Zheng, and S. G. Sun, Electrochim. Acta, 2010, 55(3): 1140

    Article  Google Scholar 

  119. H. Xia, M. O. Lai, and L. Lu, J. Mater. Chem., 2010, 20(33): 6896

    Article  Google Scholar 

  120. G. X. Wang, X. P. Shen, J. N. Yao, D. Wexler, and J. Ahn, Electrochem. Commun., 2009, 11(3): 546

    Article  Google Scholar 

  121. A. R. Armstrong, G. Armstrong, J. Canales, R. Garcia, and P. G. Bruce, Adv. Mater., 2005, 17(7): 862

    Article  Google Scholar 

  122. P. Liu, S. H. Lee, C. e. Tracy, Y. Yan, and J. a. Turner, Adv. Mater., 2002, 14(1): 27

    Article  Google Scholar 

  123. C. M. Julien, Materials Science and Engineering: R: Reports, 2003, 40(2): 47

    Article  Google Scholar 

  124. Y. S. Hu, L. Kienle, Y. G. Guo, and J. Maier, Adv. Mater., 2006, 18(11): 1421

    Article  Google Scholar 

  125. Z. X. Yang, G. D. Du, Z. P. Guo, X. B. Yu, Z. X. Chen, T. L. Guo, and H. K. Liu, J. Mater. Chem., 2011, 21(24): 8591

    Article  Google Scholar 

  126. L. Shen, C. Yuan, H. Luo, X. Zhang, K. Xu, and F. Zhang, J. Mater. Chem., 2011, 21(3): 761

    Article  Google Scholar 

  127. J. J. Huang and Z. Y. Jiang, Electrochim. Acta, 2008, 53(26): 7756

    Article  Google Scholar 

  128. F. F. Cao, Y. G. Guo, S. F. Zheng, X. L. Wu, L. Y. Jiang, R. R. Bi, L. J. Wan, and J. Maier, Chem. Mat., 2010, 22(5): 1908

    Article  Google Scholar 

  129. D. H. Lee, D. W. Kim, and J. G. Park, Cryst. Growth Des., 2008, 8(12): 4506

    Article  Google Scholar 

  130. J. S. Sakamoto and B. Dunn, J. Electrochem. Soc., 2002, 149(1): A26

    Article  Google Scholar 

  131. X. Jia, Z. Chen, A. Suwarnasarn, L. Rice, X. Wang, H. Sohn, Q. Zhang, B. M. Wu, F. Wei, and Y. Lu, Energy Environ. Sci., 2012, 5(5): 6845

    Article  Google Scholar 

  132. X. M. Liu, Z. D. Huang, S. Oh, P. C. Ma, P. C. H. Chan, G. K. Vedam, K. Kang, and J. K. Kim, J. Power Sources, 2010, 195(13): 4290

    Article  Google Scholar 

  133. J. Xu, G. Chen, and X. Li, Mater. Chem. Phys., 2009, 118(1): 9

    Article  MathSciNet  Google Scholar 

  134. Y. Zhou, J. Wang, Y. Hu, R. O’Hayre, and Z. Shao, Chemical Communications, 2010, 46(38): 7151

    Article  Google Scholar 

  135. C. Ban, Z. Li, Z. Wu, M. J. Kirkham, L. Chen, Y. S. Jung, E. A. Payzant, Y. Yan, M. S. Whittingham, and A. C. Dillon, Adv. Energy Mater., 2011, 1(1): 58

    Article  Google Scholar 

  136. J. J. Chen and M. S. Whittingham, Electrochem. Commun., 2006, 8(5): 855

    Article  Google Scholar 

  137. L. Wang, Y. D. Huang, R. R. Jiang, and D. Z. Jia, J. Electrochem. Soc., 2007, 154(11): A1015

    Article  Google Scholar 

  138. Y. Q. Qiao, J. P. Tu, Y. J. Mai, L. J. Cheng, X. L. Wang, and C. D. Gu, J. Alloy. Compd., 2011, 509(25): 7181

    Article  Google Scholar 

  139. K. Evanoff, J. Khan, A. A. Balandin, A. Magasinski, W. J. Ready, T. F. Fuller, and G. Yushin, Adv. Mater., 2012, 24(4): 533

    Article  Google Scholar 

  140. X. Chen, H. Zhu, Y.-C. Chen, Y. Shang, A. Cao, L. Hu, and G. W. Rubloff, ACS Nano, 2012, 6(9): 7948

    Article  Google Scholar 

  141. D. R. Rolison, J. W. Long, J. C. Lytle, A. E. Fischer, C. P. Rhodes, T. M. McEvoy, M. E. Bourg, and A. M. Lubers, Chem. Soc. Rev., 2008, 38(1): 226

    Article  Google Scholar 

  142. I. S. Hwang, J. C. Kim, S. D. Seo, S. Lee, J. H. Lee, and D. W. Kim, Chem. Commun., 2012, 48(56): 7061

    Article  Google Scholar 

  143. W. Wang and P. N. Kumta, ACS Nano, 2010, 4(4): 2233

    Article  Google Scholar 

  144. L. F. Cui, L. B. Hu, J. W. Choi, and Y. Cui, ACS Nano, 2010, 4(7): 3671

    Article  Google Scholar 

  145. Y. Wu, Y. Wei, J. P. Wang, K. L. Jiang, and S. S. Fan, Nano Lett., 2013, 13(2): 818

    Article  ADS  Google Scholar 

  146. B. A. Johnson and R. E. White, J. Power Sources, 1998, 70(1): 48

    Article  ADS  Google Scholar 

  147. P. Arora, R. E. White, and M. Doyle, J. Electrochem. Soc., 1998, 145(10): 3647

    Article  Google Scholar 

  148. J. W. Braithwaite, A. Gonzales, G. Nagasubramanian, S. J. Lucero, D. E. Peebles, J. A. Ohlhausen, and W. R. Cieslak, J. Electrochem. Soc., 1999, 146(2): 448

    Article  Google Scholar 

  149. A. Kiebele and G. Gruner, Appl. Phys. Lett., 2007, 91(14)

    Google Scholar 

  150. Y. X. Zhou, L. B. Hu, and G. Gruner, Appl. Phys. Lett., 2006, 88(12)

    Google Scholar 

  151. L. B. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, and Y. Cui, Proc. Natl. Acad. Sci. USA, 2009, 106(51): 21490

    Article  ADS  Google Scholar 

  152. N. Singh, C. Galande, A. Miranda, A. Mathkar, W. Gao, A. L. M. Reddy, A. Vlad, and P. M. Ajayan, Sci. Rep., 2012, 2

    Google Scholar 

  153. L. B. Hu, H. Wu, F. La Mantia, Y. A. Yang, and Y. Cui, ACS Nano, 2010, 4(10): 5843

    Article  Google Scholar 

  154. B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, Energy Environ. Sci., 2009, 2(6): 638

    Article  Google Scholar 

  155. K. Wang, S. Luo, Y. Wu, X. F. He, F. Zhao, J. P. Wang, K. L. Jiang, and S. S. Fan, Adv. Funct. Mater., 2013, 23(7): 846

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Wang, J., Jiang, K. et al. Applications of carbon nanotubes in high performance lithium ion batteries. Front. Phys. 9, 351–369 (2014). https://doi.org/10.1007/s11467-013-0308-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0308-x

Keywords

Navigation