Skip to main content
Log in

Numerical investigation of rainfall-induced fines migration and its influences on slope stability

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Rainfall-infiltration-induced fines migration within soil slopes may alter the local porosity and hydraulic properties of soils, and is known to be a possible cause of the failure of slopes. To investigate the intrinsic mechanisms, a mathematical formulation capable of capturing the main features of the coupled unsaturated seepage and fines migration process has been presented. Within the formulation, an unsaturated erodible soil is treated as a three-phase multi-species porous medium based on mixture theory; mass conservation equations with mass exchange terms together with the rate equations controlling fines erosion and deposition processes are formulated as the governing equations and are solved by the FEM method. The influences of both the fines detachment and deposition on the stability of slopes under rainfall infiltration have been investigated numerically. The results show that depending on whether the fines move out or get captured at pore constrictions, both desired and undesired consequences may arise out of the fines migration phenomenon. It is suggested that more attention should be paid to those slopes susceptible to internal erosion whose safety analysis cannot be predicted by traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bonelli S (ed) (2012) Erosion of geomaterials. Wiley, Hoboken

    Google Scholar 

  2. Chang D, Zhang L, Cheuk J (2014) Mechanical consequences of internal soil erosion. HKIE Trans Hong Kong Inst Eng 21(4):198–208. doi:10.1080/1023697X.2014.970746

    Article  Google Scholar 

  3. Chen XQ (2006) Initiation mechanism of landslide translation to debris flow. Ph.D. Dissertation of Southwest Jiaotong University (in Chinese)

  4. Chinkulkijniwat A, Yubonchit S, Horpibulsuk S, Jothityangkoon C, Jeebtaku C, Arulrajah A (2016) Hydrological responses and stability analysis of shallow slopes with cohesionless soil subjected to continuous rainfall. Can Geotech J. doi:10.1139/cgj-2016-0143

    Google Scholar 

  5. Civan F (2015) Reservoir formation damage, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  6. Civan F (2016) Modified formulations of particle deposition and removal kinetics in saturated porous media. Transp Porous Media 111(2):381–410. doi:10.1007/s11242-015-0600-z

    Article  Google Scholar 

  7. Cividini A, Gioda G (2004) Finite-element approach to the erosion and transport of fine particles in granular soils. Int J Geomech 4(3):191–198. doi:10.1061/(ASCE)1532-3641(2004)4:3(191)

    Article  Google Scholar 

  8. Cividini A, Bonomi S, Vignati GC, Gioda G (2009) Seepage-induced erosion in granular soil and consequent settlements. Int J Geomech 9:187–194

    Article  Google Scholar 

  9. Collins BD, Znidarcic D (2004) Stability analyses of rainfall induced landslides. J Geotech Geoenviron Eng 130(4):362. doi:10.1061/(ASCE)1090-0241(2004)130:4(362)

    Article  Google Scholar 

  10. Coussy O (2004) Poromechanics. Wiley, Hoboken, p 312

    Google Scholar 

  11. Crosta G, di Prisco C (1999) On slope instability induced by seepage erosion. Can Geotech J 36(6):1056–1073. doi:10.1139/t99-062

    Article  Google Scholar 

  12. Cui P, Guo C, Zhou J, Hao M, Xu F (2014) The mechanisms behind shallow failures in slopes comprised of landslide deposits. Eng Geol 180:34–44. doi:10.1016/j.enggeo.2014.04.009

    Article  Google Scholar 

  13. Fujisawa K, Murakami A, Nishimura S-I (2010) Simultaneous modeling of internal erosion and deformation of soil structures. In: He Q, Shen S-L (eds) Geoenvironmental engineering and geotechnics, vol 50. American Society of Civil Engineers (ASCE), Hannover, pp 71–78. doi:10.1061/41105(378)11

  14. Galindo-Torres SA, Scheuermann A, Mühlhaus HB, Williams DJ (2015) A micro-mechanical approach for the study of contact erosion. Acta Geotech 10(3):357–368. doi:10.1007/s11440-013-0282-z

    Article  Google Scholar 

  15. Gardner WR (1958) Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci 85(4):228–232

    Article  Google Scholar 

  16. Gruesbeck C, Collins RE (1982) Entrainment and deposition of fine particles in porous media. Soc Petrol Eng J 22:847–856. doi:10.2118/8430-PA

    Article  Google Scholar 

  17. Guo CX (2015) Research on the fine particle migration in wide grading and poorly consolidated soil. Ph.D. Dissertation of University of Chinese Academy of Sciences (in Chinese)

  18. Harrison C (2014) On the mechanics of seepage induced cohesionless soil slope instability as applied to foreshore engineering. In: 22nd Vancouver geotechnical society symposium program. http://v-g-s.squarespace.com/s/Paper-7-Harrison.pdf

  19. Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897. doi:10.1029/2000WR900090

    Article  Google Scholar 

  20. Jian B, Lu X, Wang S, Chen X, Cui P (2005) The movement of fine grains and its effects on the landslide and debris flow caused by raining. Chin J Undergr Space Eng 1(7):1014–1017

    Google Scholar 

  21. Ke L, Takahashi A (2014) Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohesionless soil. Soils Found 54(4):713–730. doi:10.1016/j.sandf.2014.06.024

    Article  Google Scholar 

  22. Khilar KC, Fogler HS (1983) Water sensitivity of sandstones. Soc Petrol Eng J 23(1):55–64. doi:10.2118/10103-PA

    Article  Google Scholar 

  23. Khilar KC, Fogler HS (1998) Migration of fines in porous media. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  24. Lei X, Wong H, Fabbri A, Limam A, Cheng YM (2014) Computers and Geotechnics A thermo-chemo-electro-mechanical framework of unsaturated expansive clays. Comput Geotech 62:175–192. doi:10.1016/j.compgeo.2014.07.004

    Article  Google Scholar 

  25. Liu X, Civan F (1993) Characterization and prediction of formation damage in two-phase flow systems. In: SPE production operations symposium. Society of Petroleum Engineers. doi:10.2118/25429-MS

  26. Loret B, Simões FMF (2005) A framework for deformation, generalized diffusion, mass transfer and growth in multi-species multi-phase biological tissues. Eur J Mech A Solids 24(5):757–781

    Article  MathSciNet  MATH  Google Scholar 

  27. Lu N, Godt J (2008) Infinite slope stability under steady unsaturated seepage conditions. Water Resour Res 44(11):1–13. doi:10.1029/2008WR006976

    Article  Google Scholar 

  28. Lymberopoulos DP, Payatakes AE (1992) Derivation of topological, geometrical, and correlational properties of porous media from pore-chart analysis of serial section data. J Colloid Interface Sci 150(1):61–81

    Article  Google Scholar 

  29. Marot D, Benamar A (2012) Suffusion, transport and filtration of fine particles in granular soil. In: Bonelli S (ed) Erosion of geomaterials. Chapter 2. Wiley, London, pp 39–75

    Google Scholar 

  30. Mercier F, Bonelli S, Golay F, Anselmet F, Philippe P, Borghi R (2015) Numerical modelling of concentrated leak erosion during Hole Erosion Tests. Acta Geotechnica 10(3):319–332. doi:10.1007/s11440-014-0349-5

  31. Moffat R, Fannin RJ (2011) A hydromechanical relation governing internal stability of cohesionless soil. Can Geotech J 48(3):413–424. doi:10.1139/T10-070

    Article  Google Scholar 

  32. Muhlhaus H, Gross L, Scheuermann A (2015) Sand erosion as an internal boundary value problem. Acta Geotech 10(3):333–342. doi:10.1007/s11440-014-0322-3

    Article  Google Scholar 

  33. Rahardjo H, Ong TH, Rezaur RB, Leong EC (2007) Factors controlling instability of homogeneous soil slopes under rainfall. J Geotech Geoenviron Eng 133(12):1532–1543. doi:10.1061/(ASCE)1090-0241(2007)133:12(1532)

    Article  Google Scholar 

  34. Rahmati H, Jafarpour M, Azadbakht S, Nouri A, Vaziri H, Chan D, Xiao Y (2013) Review of sand production prediction models. J Pet Eng 2013:1–16. doi:10.1155/2013/864981

    Article  Google Scholar 

  35. Sato M, Kuwano R (2016) Effects of internal erosion on mechanical properties evaluated by triaxial compression tests. Jpn Geotech Soc Spec Publ 2(29):1056–1059. doi:10.3208/jgssp.JPN-127

    Google Scholar 

  36. Sbai MA, Azaroual M (2011) Numerical modeling of formation damage by two-phase particulate transport processes during CO2 injection in deep heterogeneous porous media. Adv Water Resour 34(1):62–82. doi:10.1016/j.advwatres.2010.09.009

    Article  Google Scholar 

  37. Schaufler A, Becker C, Steeb H (2013) Infiltration processes in cohesionless soils. ZAMM J Appl Math Mech 93(2–3):138–146. doi:10.1002/zamm.201200047

    Article  MathSciNet  Google Scholar 

  38. Scheuermann A, Mühlhaus HB (2015) Infiltration instabilities in granular materials: theory and experiments. Acta Geotech 10(3):289. doi:10.1007/s11440-015-0382-z

    Article  Google Scholar 

  39. Tao H, Tao J (2017) Quantitative analysis of piping erosion micro-mechanisms with coupled CFD and DEM method. Acta Geotech. doi:10.1007/s11440-016-0516-y

    Google Scholar 

  40. Tsai TL, Chen HF (2009) Effects of degree of saturation on shallow landslides triggered by rainfall. Environ Earth Sci 59(6):1285–1295. doi:10.1007/s12665-009-0116-3

    Article  Google Scholar 

  41. Tsaparas I, Rahardjo H, Toll DG, Leong EC (2002) Controlling parameters for rainfall-induced landslides. Comput Geotech 29(1):1–27. doi:10.1016/S0266-352X(01)00019-2

    Article  Google Scholar 

  42. Uzuoka R, Ichiyama T, Mori T, Kazama M (2012) Hydro-mechanical analysis of internal erosion with mass exchange between solid and water. In: Proceedings of 6th international conference on scour and erosion, Paris, pp 655–662

  43. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soil. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  44. Vincens E, Witt KJ, Homberg U (2014) Approaches to determine the constriction size distribution for understanding filtration phenomena in granular materials. Acta Geotech 10(3):291–303. doi:10.1007/s11440-014-0308-1

    Article  Google Scholar 

  45. Wang ZB (2011) Study on soil pores clogging by particles transport and the slope failure mode of in triggering area of debris flow. Ph.D. Dissertation of Institute of Rock & Soil Mechanics Chinese Academy of Sciences (in Chinese)

  46. Wang ZB, Li K, Wang R, Hu MJ (2016) Impact of fine particle content on mode and scale of slope instability of debris flow. Adv Sci Technol Water Resour 36(2):35–41 (in Chinese)

  47. Zhang L, Zhang LL (2014) Influence of particle transport on slope stability under rainfall infiltration. In: Zhang L, Wang Y, Wang G, Dianqing L (eds) Geotechnical safety and risk IV. CRC Press, London, pp 323–328

  48. Zhang LL, Zhang J, Zhang LM, Tang WH (2011) Stability analysis of rainfall-induced slope failure—a review. Geotech Eng 164(164):299–316. doi:10.1680/geng.2011.164.5.299

    Article  Google Scholar 

  49. Zhang XS, Wong H, Leo CJ, Bui TA, Wang JX, Sun WH, Huang ZQ (2013) A thermodynamics-based model on the internal erosion of earth structures. Geotech Geol Eng 31(2):479–492. doi:10.1007/s10706-012-9600-8

    Article  Google Scholar 

  50. Zhou J, Cui P, Yang X, Su Z, Guo X (2013) Debris flows introduced in landslide deposits under rainfall conditions: the case of Wenjiagou gully. J Mt Sci. doi:10.1007/s11629-013-2492-0

    Google Scholar 

  51. Zhuang J, You Y, Chen X, Pei L (2012) Effect of infiltration and anti-scourability of mixed-grain-sized, unconsolidated soil on debris flow initiation. Bull Soil Water Conserv 32(4):43–47 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

Financial support from the NSFC (Nos. 41702331, 41771021, 41472293), Hundred Young Talents Program of IMHE (SDSQB-2016-01), NSFC-ICIMOD (Grant No. 41661144041), “Light of the West” of CAS (Y7R2070070), Youth fund of IMHE (Y7K2050050), the Key Research & Development Program and the Scientific Support Program of the Science & Technology Department of Sichuan Province (Grant No. 2017SZ0041; Grant No. 2016SZ0067) is acknowledged. Also a special acknowledgement should be expressed to Prof. CHEN xiao-qing for his helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongji Yang or Siming He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, X., Yang, Z., He, S. et al. Numerical investigation of rainfall-induced fines migration and its influences on slope stability. Acta Geotech. 12, 1431–1446 (2017). https://doi.org/10.1007/s11440-017-0600-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0600-y

Keywords

Navigation