Skip to main content
Log in

Dendrimers as carriers for contrast agents in magnetic resonance imaging

  • Review
  • Polymer Chemistry
  • Published:
Chinese Science Bulletin

Abstract

Magnetic resonance imaging (MRI) is a non-invasive clinical imaging modality, which has become widely used in the diagnosis of human diseases around the world. Some MRI exams include the use of contrast agents. The goal of an ideal MRI contrast agent involves the tissue- or organ-targeting materials with high relaxivity and specificity, low toxicity and side effects, suitable long intravascular duration and excretion time and high contrast enhancement with low doses, in vivo, all coupled to low overall cost. Dendrimers are synthetic, highly branched, mono-disperse macromolecules of nanometer dimensions. Properties associated with these dendrimers such as uniform size, water solubility, modifiable surface functionality and available internal cavities make them candidates for ideal carriers of MRI contrast agents. The research progress of the dendritic contrast agents is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lauterbur P C. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature, 1973, 242: 190–191

    Article  Google Scholar 

  2. Gallez B, Swartz H M. In vivo EPR: When, how and why? NMR Biomed, 2004, 17: 223–225

    Article  Google Scholar 

  3. Lauffer R B. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: Theory and design. Chem Rev, 1987, 87: 901–927

    Article  Google Scholar 

  4. Sener R N. Diffusion MRI findings in phenylketonuria. Eur Radiol, 2003, 13: L226–L229

    Article  Google Scholar 

  5. Caravan P, Ellison J J, Mcmurry T J, et al. Gadolinium (III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem Rev, 1999, 99: 2293–2352

    Article  Google Scholar 

  6. Yan G P, Zhuo R X. Research progress of magnetic resonance imaging contrast agents. Chinese Sci Bull, 2001, 46: 1233–1237

    Article  Google Scholar 

  7. Yan G P, Robinsonand L, Hogg P. Magnetic resonance imaging contrast agents: Overview and perspectives. Radiography, 2007, 13: e5–e19

    Article  Google Scholar 

  8. Yan G P, Peng L, Jian S Q, et al. Spin probes for electron paramagnetic resonance imaging. Chinese Sci Bull, 2008, 53: 3777–3789

    Article  Google Scholar 

  9. Yan G P, Bischa D, Bottle S E. Synthesis and properties of novel porphyrin spin probes containing isoindoline nitroxides. Free Radic Biol Med, 2007, 43: 111–116

    Article  Google Scholar 

  10. Platas-Iglesias C, Mato-Iglesias M, Djanashvili K, et al. Lanthanide chelates containing pyridine units with potential application as contrast agents in magnetic resonance imaging. Chem Eur J, 2004, 10: 3579–3590

    Article  Google Scholar 

  11. Weinmann H J, Brash R C, Press W R, et al. Characteristic of gadolinium-DTPA complex: A potential NMR contrast agent. Am J Radiology, 1984, 142: 619–624

    Google Scholar 

  12. Comblin V, Gilsoul D, Hermann M, et al. Designing new MRI contrast agents: A coordination chemistry challenge. Coord Chem Rev, 1999, 185: 451–470

    Article  Google Scholar 

  13. Wedeking P, Sotak C H, Telser J, et al. Quantitative dependence of MR signal intensity on tissue concentration of Gd(HP-DO3A) in the nephrectomized rat. Magn Reson Imaging, 1992, 10: 97–108

    Article  Google Scholar 

  14. Mikei K, Helm L, Brucher E, et al. 17O NMR study of water exchange on Gd(DTPA)(H2O)2− and Gd(DOTA)(H2O)2− related to NMR imaging. Inorg Chem, 1993, 32: 3844–3850

    Article  Google Scholar 

  15. Zhuo R X, Lu Z R, Wei J F, et al. The methods of synthesis of polyaminocarboxylates metal complexes. Chinese Patent, 1995, 95–1 19302.3

  16. Lowe M P. MRI contrast agents: The next generation. Aust J Chem, 2002, 55: 551–556

    Article  Google Scholar 

  17. Waters E A, Wickline S A. Contrast agents for MRI. Basic Res Cardiol, 2008, 103: 114–121

    Article  Google Scholar 

  18. Yan G P, Zhang J Y, Zhou J X, et al. Targeted contrast agents for molecular imaging in magnetic resonance imaging (MRI). In: Chen X Y, ed. Recent Advances of Bioconjugate Chemistry in Molecular Imaging. Kerala, India: Research Signpost, 2008. 371–398

    Google Scholar 

  19. Wallace R A, Haar J P, Miller D B, et al. Synthesis and preliminary evaluation of MP-2269: A novel, nonaromatic small-molecule blood-pool MR contrast agent. Magn Reson Med, 1998, 40: 733–739

    Article  Google Scholar 

  20. Duarte M G, Gil M H, Peters J A, et al. Synthesis, characterization, and relaxivity of two linear Gd(DTPA)-polymer conjugates. Bioconjugate Chem, 2001, 12: 170–177

    Article  Google Scholar 

  21. Tóth E, Uffelen I V, Helm L, et al. Gadolinium-based linear polymer with temperature-independent proton relaxivities: A unique interplay between the water exchange and rotational contributions. Magn Reson Chem, 1998, 36: S125–S134

    Article  Google Scholar 

  22. Mohs A M, Wang X H, Goodrich K C, et al. PEG-g-poly (DTPA-co-L-cystine): A biodegradable macromolecular blood pool contrast agent for MR imaging. Bioconjugate Chem, 2004, 15: 1424–1430

    Article  Google Scholar 

  23. Lu Z R, Parker D L, Goodrich K C, et al. Extracellular biodegradable macromolecular gadolinium(III) complexes for MRI. Magn Reson Med, 2004, 51: 27–34

    Article  Google Scholar 

  24. Ouyang M, Zhuo R X, Fu G C. Study on synthesis and relaxivity of paramagnetic polyester metal complexes for MRI. Ion Exchange Adsorpt, 1996, 12: 324–327

    Google Scholar 

  25. Bai Z W, Zhuo R X. The synthesis and relaxivity of polyester-amide MRI contrast agent. Ion Exchange Adsorpt, 1996, 12: 332–335

    Google Scholar 

  26. Yan G P, Zhuo R X, Zhang X, et al. Hepatic targeting macromolecular MRI contrast agents. Polym Int, 2002, 51: 892–898

    Article  Google Scholar 

  27. Brasch R C. Rationable and applications for macromolecular Gd-based contrast agents. Magn Reson Med, 1991, 22: 282–287

    Article  Google Scholar 

  28. Aime S, Botta M, Crich S G, et al. Towards MRI contrast agent of improved efficacy NMR relaxometric investigations of the binding interaction HSA of a novel heptadentate macrocyclic triphosphonate Gd3+-complex. J Biol Inorg Chem, 1997, 2: 470–479

    Article  Google Scholar 

  29. Schuhmann-Giampieri G, Schmitt-Willich H, Frenzel T, et al. In vivo and in vitro evaluation of Gd-DTPA-polylysine as a macromolecular contrast agent for magnetic resonance imaging. Invest Radiol, 1991, 26: 969–974

    Article  Google Scholar 

  30. Roberts H C, Saeed M, Roberts T P L, et al. MRI of acute myocardial ischemia: Comparing a new contrast agent, Gd-dtpa-24-cascade-polymer, with Gd-dtpa. J Magn Reson Imaging, 1999, 9: 204–208

    Article  Google Scholar 

  31. Judd R M, Reeder S B, May-Newman K. Effects of water exchange on the measurement of myocardial perfusion using paramagnetic contrast agents. Magn Reson Med, 1999, 41: 334–342

    Article  Google Scholar 

  32. Wen X X, Jackson E F, Price R E, et al. Synthesis and characterization of poly(L-glutamic acid) gadolinium chelate: A new biodegradable MRI contrast agent. Bioconjugate Chem, 2004, 15: 1408–1415

    Article  Google Scholar 

  33. Lu Z R, Wang X H, Parker D L, et al. Poly(L-glutamic acid) Gd(III)-DOTA conjugate with a degradable spacer for magnetic resonance imaging. Bioconjugate Chem, 2003, 14: 715–719

    Article  Google Scholar 

  34. Uzgiris E E, Cline H, Moasser B, et al. Conformation and structure of polymeric contrast agents for medical imaging. Biomacromolecules, 2004, 5: 54–61

    Article  Google Scholar 

  35. Yan G P, Wang X Y, Wang X L, et al. Synthesis and in vitro property study of polyaspartamides. Chin J Chem, 2007, 25: 1748–1753

    Article  Google Scholar 

  36. Yan G P, Zhuo R X, Xu M Y, et al. Liver-targeting Macromolecular MRI Contrast Agents. Sci China Ser B-Chem, 2001, 44: 344–352

    Article  Google Scholar 

  37. Waeckerle-Mena Y, Groettrupa M. PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines. Adv Drug Deliv Rev, 2005, 57: 475–482

    Article  Google Scholar 

  38. Tansey W, Ke S, Cao X Y, et al. Synthesis and characterization of branched poly(L-glutamic acid) as a biodegradable drug carrier. J Control Release, 2004, 94: 39–51

    Article  Google Scholar 

  39. Patri A K, Majoros I J, Baker J R. Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol, 2002, 6: 466–471

    Article  Google Scholar 

  40. Bezouska K. Design, functional evaluation and biomedical applications of carbohydrate dendrimers glycodendrimers. Rev Mol Biotechnol, 2002, 90: 269–290

    Article  Google Scholar 

  41. Choia J S, Namb K, Parkb J Y, et al. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. J Control Release, 2004, 99: 445–456

    Article  Google Scholar 

  42. Namazi H, Adeli M. Dendrimers of citric acid and poly (ethylene glycol) as the new drug-delivery agents. Biomaterials, 2005, 26: 1175–1183

    Article  Google Scholar 

  43. Devarakonda B, Hill R A, de Villiers M M. The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. Int J Pharm, 2004, 284: 133–140

    Article  Google Scholar 

  44. Metullio L, Ferrone M, Coslanich A, et al. Polyamidoamine (yet not PAMAM) dendrimers as bioinspired materials for drug delivery: Structure-activity relationships by molecular simulations. Biomacromolecules, 2004, 5: 1371–1378

    Article  Google Scholar 

  45. Zhou J H, Wu J Y, Hafdi N, et al. PAMAM dendrimers for efficient siRNA delivery and potent gene silencing. Chem Commun, 2006: 2362–2364

  46. Sanchez-Sancho F, Perez-Inestrosa E, Suau R, et al. Dendrimers as carrier protein mimetics for IgE antibody recognition: Synthesis and characterization of densely penicilloylated dendrimers. Bioconjugate Chem, 2002, 13: 647–653

    Article  Google Scholar 

  47. Allen M J, Raines R T, Kiessling L L. Contrast agents for mgnetic resonance imaging synthesized with ring-opening metathesis polymerization. J Am Chem Soc, 2006, 128: 6534–6535

    Article  Google Scholar 

  48. Neerman M F, Zhang W, Parrish A R, et al. In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery. Int J Pharm, 2004, 281: 129–132

    Article  Google Scholar 

  49. Beezer A E, King A S H, Martin K, et al. Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM derivatives. Tetrahedron, 2003, 59: 3873–3880

    Article  Google Scholar 

  50. Vandamme T F, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release, 2005, 102: 23–38

    Article  Google Scholar 

  51. Schatzleina A G, Zinselmeyera B H, Dufesa A C, et al. Preferential liver gene expression with polypropylenimine dendrimers. J Control Release, 2005, 101: 247–258

    Article  Google Scholar 

  52. Balogh L, de Leuze-Jallouli A, Dvornic P, et al. Architectural copolymers of PAMAM dendrimers and ionic polyacetylenes. Macromolecules, 1999, 32: 1036–1042

    Article  Google Scholar 

  53. Hudson S D, Jung H T, Percec V, et al. Direct visualization of individual cylindrical and spherical supramolecular dendrimers. Science, 1997, 278: 449–452

    Article  Google Scholar 

  54. Kleinman M H, Flory J H, Tomalia D A, et al. Effect of protonation and PAMAM dendrimer size on the complexation and dynamic mobility of 2-naphthol. J Phys Chem B, 2000, 104: 11472–11479

    Article  Google Scholar 

  55. Nicolle G M, Toth E, Schmitt-Willich H, et al. The impact of rigidity and water exchange on the relaxivity of a dendritic MRI contrast agent. Chem Eur J, 2002, 8: 1040–1048

    Article  Google Scholar 

  56. Stiriba S E, Frey H, Haag R. Dendritic polymers in biomedical applications: From potential to clinical use in diagnostics and therapy. Angew Chem Int Ed, 2002, 41: 1329–1334

    Article  Google Scholar 

  57. Esfand R, Tomalia D A. Poly(amidoamine) (PAMAM) dendrimers: From biomimicry to drug delivery and biomedical applications. Drug Discov Today, 2001, 6: 427–436

    Article  Google Scholar 

  58. Kobayshi H, Kawamoto S, Jo S K, et al. Macromolecular MRI contrast agents with small dendrimers: Pharmacokinetic differences between sizes and cores. Bioconjugate Chem, 2003, 14: 388–394

    Article  Google Scholar 

  59. Margerum L D, Campion B K, Koo M, et al. Gadolinium (III) DO3A macrocycles and polyethylene glycol coupled to dendriers effect of molecular weight on physical and biological properties of macromolecular magnetic resonance imaging contrast agents. J Alloy Comp, 1997, 249: 185–190

    Article  Google Scholar 

  60. Fischer M, Vögtle F. Dendrimers: From design to application—A progress report. Angew Chem Int Ed, 1999, 38: 884–905

    Article  Google Scholar 

  61. Wiener E C, Brechbiel M W, Brothers H, et al. Dendrimer-based metal chelates: A new class of magnetic resonance imaging contrast agents. Magn Reson Med, 1994, 31: 1–8

    Article  Google Scholar 

  62. Kobayashi H, Jo S K, Kawamoto S, et al. Polyamine dendrimer-based MRI contrast agents for functional kidney imaging to diagnose acute renal failure. J Magn Reson Imaging, 2004, 20: 512–518

    Article  Google Scholar 

  63. Kobayashi H, Kawamoto S, Saga T, et al. Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magn Reson Med, 2001, 46: 781–788

    Article  Google Scholar 

  64. Wiener E C, Auteri F P, Chen J W, et al. Molecular dynamics of Ion-chelate complexes attached to dendrimers. J Am Chem Soc, 1996, 118: 7774–7782

    Article  Google Scholar 

  65. Bryant L H, Brechbiel M W, Wu C C, et al. Synthesis and relaxometry of high-generation (G=5, 7, 9, and 10) PAMAM dendrimer-DOTA-gadolinium chelates. J Magn Reson Imaging, 1999, 9: 348–352

    Article  Google Scholar 

  66. Langereis S, de Lussanet Q G, van Genderen M H P, et al. Evaluation of Gd(III)DTPA-terminated poly(propylene imine) dendrimers as contrast agents for MR imaging. NMR Biomed, 2006, 19: 133–141

    Article  Google Scholar 

  67. Canetta E, Maino G. Molecular dynamic analysis of the structure of dendrimers. Nucl Instrum Meth Phys Res B, 2004, 213: 71–74

    Article  Google Scholar 

  68. Kobayashi H, Brechbiel M W. Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev, 2005, 57: 2271–2286

    Article  Google Scholar 

  69. Kobayashi H, Kawamoto S, Star R A, et al. Micro-magnetic resonance lymphangiography in mice using a novel dendrimer-based magnetic resonance imaging contrast agent. Cancer Res, 2003, 63: 271–276

    Google Scholar 

  70. Kobayashi H, Kawamoto S, Choyke P L, et al. Comparison of dendrimer-based macromolecular contrast agents for dynamic micro-magnetic resonance lymphangiography. Magn Reson Med, 2003, 50: 758–766

    Article  Google Scholar 

  71. Francese G, Dunand F A, Loosli C, et al. Functionalization of PAMAM dendrimers with nitronyl nitroxide radicals as models for the outer-sphere relaxation in dentritic potential MRI contrast agents. Magn Reson Chem, 2003, 41: 81–83

    Article  Google Scholar 

  72. Winalski C S, Shortkroff S, Mulkern R V, et al. Magnetic resonance relaxivity of dendrimer-linked nitroxides. Magn Reson Med, 2002, 48: 965–972

    Article  Google Scholar 

  73. Strable E, Bulte J W M, Moskowitz B, et al. Synthesis and characterization of soluble iron oxide-dendrimer composites. Chem Mater, 2001, 13: 2201–2209

    Article  Google Scholar 

  74. Yan G P, Liu M L, Li L Y. Studies on polyaspartamide gadolinium complexes containing sulfadiazine groups as MRI contrast agents. Bioconjugate Chem, 2005, 16: 967–971

    Article  Google Scholar 

  75. Yan G P, Liu M L, Li L Y. Studies on polyaspartamide gadolinium complexes as potential magnetic resonance imaging contrast agents. Radiography, 2005, 11: 117–122

    Article  Google Scholar 

  76. Yan G P, Zheng C Y, Cao W, et al. Synthesis and preliminary evaluation of gadolinium complexes containing sulfonamide groups as potential MRI contrast agents. Radiography, 2003, 9: 35–41

    Article  Google Scholar 

  77. Yan G P, Zhuo R X, Yang Y H, et al. Tumor-selective macromolecular MRI contrast agents. J Bioact Compat Polym, 2002, 17: 139–151

    Article  Google Scholar 

  78. Sega E I, Low P S. Tumor detection using folate receptor-targeted imaging agents. Cancer Metastasis Rev, 2008, 27: 655–664

    Article  Google Scholar 

  79. Wiener E C, Konda S, Shadron A, et al. Targeting dendrimer-chelates to tumours and tumour cells expressing the high-affinity folate receptor. Invest Radiol, 1997, 32: 748–754

    Article  Google Scholar 

  80. Konda S D, Aai]ref M, Wang S, et al. Specific targeting of folate-dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. Magnetic Resonance Materials in Physics. Biol Med, 2001, 12: 104–113

    Google Scholar 

  81. Sun C, Sze R, Zhang M Q. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A, 2006, 78A: 550–557

    Article  Google Scholar 

  82. Kobayashi H, Kawamoto S, Saga T, et al. Avidin-dendrimer-(1B4M-Gd)254: A tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI. Bioconjugate Chem, 2001, 12: 587–593

    Article  Google Scholar 

  83. Yan G P, Hu B, Liu M L, et al. Synthesis and evaluation of gadolinium complexes based on PAMAM as MRI contrast agents. J Pharm Pharmacol, 2005, 57: 351–357

    Article  Google Scholar 

  84. Du B, Zhou R J, Zhou R X. Synthesis of cyclic core dendritic polymer and its usage as a vector for transferring foreign DNA into human cells. Chin Chem Lett, 1998, 9: 635–638

    Google Scholar 

  85. Yan G P, Bottle S E, Zhuo R X, et al. Evaluation on dendritic gadolinium complexes as MRI contrast agents. J Bioact Compatible Polym, 2004, 19: 453–465

    Article  Google Scholar 

  86. Langereis S, Dirksen A, Hackeng T M, et al. Dendrimers and magnetic resonance imaging. New J Chem, 2007, 31: 1152–1160

    Article  Google Scholar 

  87. Lu Z R, Ye F R, Vaidya A. Polymer platforms for drug delivery and biomedical imaging. J Control Release, 2007, 122: 269–277

    Article  Google Scholar 

  88. Kim J H, Park K, Nam H Y, et al. Polymers for bioimaging. Prog Polym Sci, 2007, 32: 1031–1053

    Article  Google Scholar 

  89. Lee L J, Park K, Lee S, et al. New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv Funct Mater, 2009, 19: 1553–1566

    Article  Google Scholar 

  90. Mulder A, Huskens J, Reinhoudt D N. Multivalency in supramolecular chemistry and nanofabrication. Org Biomol Chem, 2004, 2: 3409–3424

    Article  Google Scholar 

  91. Badjic J D, Nelson A, Cantrill S J, et al. Multivalency and cooperativity in supramolecular chemistry. Ace Chem Res, 2005, 38: 723–732

    Article  Google Scholar 

  92. Koyama Y, Talanov V S, Bernardo M, et al. A dendrimer-based nanosized contrast agent dual-labeled for magnetic resonance and optical fluorescence imaging to localize the sentinel lymph node in mice. J Magn Reson Imaging, 2007, 25: 866–871

    Article  Google Scholar 

  93. Dirksen A, Langereis S, de Waal B F M, et al. A supramolecular approach to multivalent target-specific MRI contrast agents for angiogenesis. Chem Commun, 2005: 2811–2813

  94. Liu J Y, Zheng Y F. Development of magnetic resonance imaging contrast agents with PAMAM dendrimer cores. Mater Rev, 2007, 5: 69–72

    Google Scholar 

  95. Talanov V S, Regin O C A, Kobayashi H, et al. Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett, 2006, 6: 1459–1463

    Article  Google Scholar 

  96. Wu P, Malkoch M, Hunt J N, et al. Multivalent, bifunctional dendrimers prepared by click chemistry. Chem Commun, 2005: 5775–5777

  97. Lee C C, MacKay J A, Frechet J M, et al. Designing dendrimers for biological applications. Nat Biotechnol, 2005, 23: 1517–1526

    Article  Google Scholar 

  98. Bai J F, Gu W, Ye L. The potential application of dendrimers in medicine. Chemistry, 2001, 64: W119

    Google Scholar 

  99. Sadler K, Tam J P. Peptide dendrimers: Applications and synthesis. Rev Mol Biotechnol, 2002, 90: 157–354

    Article  Google Scholar 

  100. Turnbull W B, Stoddart J F. Design and synthesis of glycodendrimers. Rev Mol Biotechnol, 2002, 90: 231–255

    Article  Google Scholar 

  101. Dirksen A, Meijer E W, Adriaens W, et al. Strategy for the synthesis of multivalent peptide-based nonsymmetric dendrimers by native chemical ligation. Chem Commun, 2006, 1667–1669

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoPing Yan.

About this article

Cite this article

Yan, G., Ai, C., Li, L. et al. Dendrimers as carriers for contrast agents in magnetic resonance imaging. Chin. Sci. Bull. 55, 3085–3093 (2010). https://doi.org/10.1007/s11434-010-3267-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-3267-4

Keywords

Navigation