Skip to main content
Log in

Kinetic analysis of self-condensing vinyl polymerization with unequal reactivities

  • Articles/Polymer Chemistry
  • Published:
Chinese Science Bulletin

Abstract

The distribution function of the hyperbranched polymers formed from the self-condensing vinyl polymerization with unequal reactivities was derived and the differential equations for the second moments are established, based on the variable of the conversion of B* groups. The various average degrees of branching can be designed by suitable values of reactivities ratio (r) and the conversion of A group (x). In order to reach the maximum degree of branching at a specified x, r needed is dependant on the value of x. The higher the x, the less the r needed is for the maximum value of degree of branching. At the end of the reaction, the maximum degree of branching reaches 0.5 with r=2.59.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao C, Yan D Y. Hyperbranched polymers: From synthesis to applications. Prog Polym Sci, 2004, 29: 183–275

    Article  CAS  Google Scholar 

  2. Yan D Y, Zhou Y F, Hou J. Supramolecular self-assembly of macroscopic tubes. Science, 2004, 303: 65–67

    Article  PubMed  CAS  Google Scholar 

  3. Choi J Y, Tan L S, Baek J B. Self-controlled synthesis of hyperbranched poly(ether ketone)s from A3+B2 approach via different solubilities of monomers in the reaction medium. Macromolecules, 2006, 39(26): 9057–9063

    Article  CAS  Google Scholar 

  4. Liu C H, Gao C, Yan D Y. Synergistic supramolecular encapsulation of amphiphilic hyperbranched polymer to dyes. Macromolecules, 2006, 39(26): 8102–8111

    Article  CAS  Google Scholar 

  5. Muthukrishnan S, Erhard D P, Mori H, et al. Synthesis and characterization of surface-grafted hyperbranched glycomethacrylates. Macromolecules, 2006, 39(8): 2743–2750

    Article  CAS  Google Scholar 

  6. Jia Z, Chen H, Zhu X, et al. Backbone-thermoresponsive hyperbranched polyethers. J Am Chem Soc, 2006, 128(25): 8144–8145

    Article  PubMed  CAS  Google Scholar 

  7. Flory P J. Molecular size distribution in three dimensional polymers. VI. Branched polymers. J Am Chem Soc, 1952, 74(11): 2718–2723

    Article  CAS  Google Scholar 

  8. Kim Y H, Webster O W. Hyperbranched polyphenylenes. Polym Prepr, 1988, 29(2): 310–311

    CAS  Google Scholar 

  9. Müller A H E, Yan D, Wulkow M. Molecular weight distribution of hyperbranched polymers made by self-condensing vinyl polymerization. 1. Molecular weight distribution. Macromolecules, 1997, 30(23): 7015–7023

    Article  Google Scholar 

  10. Yan D, Müller A H E, Matyjaszewski K. Molecular weight distribution of hyperbranched polymers made by self-condensing vinyl polymerization. 2. Degree of branching. Macromolecules, 1997, 30(23): 7024–7033

    Article  CAS  Google Scholar 

  11. Zhou Z P, Yan D Y. Kinetic analysis for polycondensation of ABg type monomers (in Chinese). Chem J Chin Univs, 1999, 20(12): 1978–1981

    CAS  Google Scholar 

  12. Yan D Y, Zhou Z P. Molecular weight distribution of hyperbranched polymers generated from polycondensation of AB2 type monomers in the presence of multifunctional core moieties. Macromolecules, 1999, 32(3): 819–824

    Article  CAS  Google Scholar 

  13. Yan D Y, Zhou Z P, Müller A H E. Molecular weight distribution of hyperbranched polymers generated by self-condensing vinyl polymerization in presence of a multifunctional initiator. Macromolecules, 1999, 32(2): 245–250

    Article  CAS  Google Scholar 

  14. Zhou Z P, Yan D Y. Kinetic analysis of the polycondensation of ABg type monomer with a multifunctional core. Polymer, 2000, 41(12): 4549–4558

    Article  CAS  Google Scholar 

  15. Yan D Y, Zhou Z P, Jiang H, et al. Kinetic model of star-branched polycondensation. Macromol Theory & Simul, 1998, 7: 13–18

    Article  CAS  Google Scholar 

  16. Percec V, Chu P, Kawasumi M. Toward “willowlike” thermotropic dentrimers. Macromolecules, 1994, 27(16): 4441–4453

    Article  CAS  Google Scholar 

  17. Chu F, Hawker C J, Pomery P J, et al. Intramolecular cyclization in hyperbranched polyesters. J Polym Sci A: Polym Chem, 1997, 35(9): 1627–1633

    Article  CAS  Google Scholar 

  18. Hawker C J, Lee R, Frechet J M J. One-step systhesis of hyperbranched dendritic polyesters. J Am Chem Soc, 1991, 113(12), 4583–4588

    Article  CAS  Google Scholar 

  19. Wooley K L, Hawker C J, Lee R, et al. One-step synthesis of hyperbranched polyesters. Molecular weight control and chain end functionalization. Polym J, 1994, 26(2): 187–197

    Article  CAS  Google Scholar 

  20. Malmstrom E, Johansson M, Hult A. Hyperbranched aliphatic polyester. Macromolecules, 1995, 28(5): 1698–1703

    Article  Google Scholar 

  21. Zhou Z P, Yan D Y. Distribution function of hyperbranched polymers formed by AB2 type polycondensation with substitution effect. Polymer, 2006, 47(4): 1473–1479

    Article  CAS  Google Scholar 

  22. Zhou Z, Kong X, Sheng W, et al. Degree of branching and molecular configuration of hyperbranched polymers formed from ABg polycondensation (in Chinese). Acta Chim Sin, 2007, 65(20): 2343–2348

    CAS  Google Scholar 

  23. Radke W, Litvinenko G I, Müller A H E. Effect of core-forming molecules on molecular weight distribution and degree of branching in the synthesis of hyperbranched polymers. Macromolecules, 1998, 31(2): 239–248

    Article  CAS  Google Scholar 

  24. Litvinenko G I, Müller A H E. Molecular weight averages and degree of branching in self-condensing vinyl copolymerization in the presence of multifunctional initiators. Macromolecules, 2002, 35(12): 4577–4583

    Article  CAS  Google Scholar 

  25. Bharathi P, Moore J S. Controlled synthesis of hyperbranched polymers by slow monomer addition to a core. Macromolecules, 2000, 33(9): 3212–3218

    Article  CAS  Google Scholar 

  26. Mori H, Walther A, Andre X, et al. Synthesis of highly cationic polyelectrolytes via self-condensing atom transfer copolymerization with 2-(diethylamino)ethyl methacrylate. Macromolecules, 2004, 37(6): 2054–2066

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiPing Zhou.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20774038, 50633010), and the Foundation of State Key Laboratory of Metal Matrix Composites

About this article

Cite this article

Zhou, Z., Wang, G. & Yan, D. Kinetic analysis of self-condensing vinyl polymerization with unequal reactivities. Chin. Sci. Bull. 53, 3516–3521 (2008). https://doi.org/10.1007/s11434-008-0501-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0501-4

Keywords

Navigation