Skip to main content
Log in

Progress in polymer solar cell

  • Review
  • Published:
Chinese Science Bulletin

Abstract

This review outlines current progresses in polymer solar cell. Compared to traditional silicon-based photovoltaic (PV) technology, the completely different principle of optoelectric response in the polymer cell results in a novel configuration of the device and more complicated photovoltaic generation process. The conception of bulk-heterojunction (BHJ) is introduced and its advantage in terms of morphology is addressed. The main aspects including the morphology of photoactive layer, which limit the efficiency and stability of polymer solar cell, are discussed in detail. The solutions to boosting up both the efficiency and stability (lifetime) of the polymer solar cell are highlighted at the end of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takamoto T, Kaneiwa M, Imaizumi M, et al. InGaP/GaAs-based multijunction solar cell. Progress in Photovoltaic, 2005, 13(6): 495–511

    Article  Google Scholar 

  2. Hoppe H, Sariciftci N S. Organic solar cell: An overview. J Mater Res, 2004, 19: 1924–1945

    Article  Google Scholar 

  3. Spanggaard H, Krebs F C. Production of large-area polymer solar cell by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate. Sol Energy Mater Sol Cell, 2004, 83(2–3): 293–300

    Google Scholar 

  4. Coakley K M, McGehee M D. Conjugated polymer photovoltaic cell. Chem Mater, 2004, 16: 4533–4542

    Article  Google Scholar 

  5. Loos J, Yang X N, Koetse M M, et al. Morphology determination of functional poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene]/poly[oxa-1,4-phenylene-1,2-(1-cyanovinylene)-2-methoxy, 5-(3,7-dimethyloctyloxy)-1,4-phenylene-1,2-(2-cyanovinylene)-1,4-phenylene] blends as used for all-polymer solar cell. J Appl Polym Sci, 2005, 97: 1001–1007

    Article  Google Scholar 

  6. Koetse M M, Sweelssen J S, Hoekerd K T, et al. Efficient polymer: polymer bulk heterojunction solar cell. Appl Phys Lett, 2006, 88: 083504

    Google Scholar 

  7. Duan X F, Wang J L, Pei J, et al. The progress in material studies of organic solar cell (in Chinese). College Chemistry, 2005, 20(3): 1–9

    Google Scholar 

  8. Winder C, Hummelen J C, Brabec C J, et al. Sensitization of low bandgap polymer bulk heterojunction solar cell. Thin Solid Films, 2002, 403–404: 373–379

    Article  Google Scholar 

  9. Meskers S C J, Hubner J, Bässler H, et al. Dispersive relaxation dynamics of photoexcitations in a polyfluorene film involving energy transfer: Experiment and Monte Carlo simulations. J Phys Chem B, 2001, 105(38): 9139–9149

    Article  Google Scholar 

  10. Moses D, Yu G, Heeger A J, et al. Temperature-independent photo-conductivity in thin films of semiconducting polymers: photocarrier sweep-out prior to deep trapping. Phys Rev Lett, 1998, 80(12): 2685–2688

    Article  Google Scholar 

  11. Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cell. Adv Funct Mater, 2001, 11(1): 15–26

    Article  Google Scholar 

  12. Sariciftci N S, Heeger A J, Wudl F, et al. Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene. Science, 1992, 258(5087): 1474–1476

    Article  Google Scholar 

  13. Smilowitz L, Sariciftci N S, Wudl, F, et al. Photoexcitation spectroscopy of conducting-polymer-C(60) composites-photoinduced electron-transfer. Phys Rev B, 1993, 47(20): 13835–13842

    Article  Google Scholar 

  14. Wei X, Sariciftci N S, Heeger A J, et al. Absorption-detected magnetic-resonance studies of photoexcitations in conjugated-polymer/C-60 composites. Phys Rev B, 1996, 53(5): 2187–2190

    Article  Google Scholar 

  15. Li F Y, Xu J H. Photoconductivity studies on C60 derivates (in Chinese). Chin Sci Bull, 1998, 43(17): 1817–1820

    Article  Google Scholar 

  16. Lee C H, Yu G, Wudl F, et al. Sensitization of the photoconductivity of conducting polymers by C60: Photoinduced electron transfer. Phys Rev B, 1993, 48(20): 15425–15433

    Article  Google Scholar 

  17. Moses D, Heeger A J. Relaxation in Polymers. ed. Kobayashi T. Singapore: World Scientific, 1993, 134

    Google Scholar 

  18. Moses D, Sinclair M, Heeger A J. Carrier photogeneration and mobility in polydiacetylene: Fast transient photoconductivity. Phys Rev Lett, 1987, 58: 2710–2713

    Article  Google Scholar 

  19. Lee C H. Picosecond transient photoconductivity in poly (p-phenylenevinylene). Phys Rev B, 1994, 49(4): 2396–2407

    Article  Google Scholar 

  20. Moses D, Okumoto H, Heeger A J, et al. Mechanism of carrier generation in poly(phenylene vinylene): Transient photoconductivity and photoluminescence at high electric fields. Phys Rev B, 1996, 54(7): 4748–4754

    Article  Google Scholar 

  21. Tang C W. Two-layer organic photovoltaic cell. Appl Phys Lett, 1986, 48(2): 183–185

    Article  Google Scholar 

  22. Peumans P, Yakimov A, Forrest S R. Micropatterning of small molecular weight organic semiconductor thin films using organic vapor phase deposition. J Appl Phys, 2003, 93(7): 4005–4016

    Article  Google Scholar 

  23. Yu G, Hummelen J C, Heeger A J, et al. Polymer photovoltaic cell: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243): 1789–1791

    Article  Google Scholar 

  24. Li G, Shrotriya V, Yang Y, et al. High-efficiency solution processable polymer photovoltaic cell by self-organization of polymer blends. Nature Materials, 2005, 4(11): 864–868

    Article  Google Scholar 

  25. Bässler H. Nondispersive and dispersive transport in random organic photoconductors. Molec Crys Liq Crys Sci Technol Sec A, 1994, 252: 11–21

    Google Scholar 

  26. Dittmer J J, Marseglia E A, Friend R H. Electron trapping in dye/polymer blend photovoltaic cell. Adv Mater, 2000, 12(17): 1270–1274

    Article  Google Scholar 

  27. Pivrikas A, Sariciftci N S, Osterbacka R, et al. Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials. Phys Rev Lett, 2005, 94(17): 176806(1–4)

    Google Scholar 

  28. Blom P W M, de Jong M J M, van Munster M G. Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene). Phys Rev B, 1997, 55(2): R656–R659

    Article  Google Scholar 

  29. Ginger D S, Greenham N C. Charge injection and transport in films of CdSe nanocrystals. J Appl Phys, 2000, 87(3): 1361–1368

    Article  Google Scholar 

  30. Huynh W U, Dittmer J J, Alivisatos A P, et al. Charge transport in hybrid nanorod-polymer composite photovoltaic cell. Phys Rev B, 2003, 67(11): 115326

    Article  Google Scholar 

  31. Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cell. Science, 2002, 295(5564): 2425–2427

    Article  Google Scholar 

  32. Tachibana Y, Moser J E, Durrant J R, et al. Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films. J Phys Chem, 1996, 100(51): 20056–20062

    Article  Google Scholar 

  33. Rehm J M, McLendon G L, Gratzel M, et al. Femtosecond electron-transfer dynamics at a sensitizing dye-semiconductor (TiO2) interface. J Phys Chem, 1996, 100(23): 9577–9578

    Article  Google Scholar 

  34. Ghosh H N, Asbury J B, Lian T Q. Direct observation of ultrafast electron injection from coumarin 343 to TiO2 nanoparticles by femtosecond infrared spectroscopy. J Phys Chem B, 1998, 102(34): 648–6486

    Article  Google Scholar 

  35. Wang Y Q, Asbury J B, Lian T Q. Ultrafast excited-state dynamics of Re(CO)(3)Cl(dcbpy) in solution and on nanocrystalline TiO2 and ZrO2 thin films. J Phys Chem A, 2000, 104(18): 4291–4299

    Article  Google Scholar 

  36. Asbury J B, Ellingson R J, Lian, T Q, et al. Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru(dcbpy) (2)(NCS)(2) in solution and on nanocrystalline TiO2 and Al2O3 thin films. J Phys Chem B, 1999, 103(16): 3110–3119

    Article  Google Scholar 

  37. Yang X N, Loos J, Janssen R A J, et al. Nanoscale morphology of high-performance polymer solar cell. Nano Lett, 2005, 5(4): 579–583

    Article  Google Scholar 

  38. Shaheen S E, Brabec C J, Sariciftci N S. 2.5% efficient organic plastic solar cell. Appl Phys Lett, 2001, 78(6): 841–843

    Article  Google Scholar 

  39. Erb T, Zhokhavets U, Brabec C J, et al. Correlation between structural and optical properties of composite polymer/fullerence films for organic solar cell. Adv Funct Mater, 2005, 15(7): 1193–1196

    Article  Google Scholar 

  40. van Mullekom H A M, Vekemans J A J M, Meijer E W, et al. Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers. Mater Sci Eng, 2001, 32: 1–40

    Article  Google Scholar 

  41. Persson N-K, Sun M T, Inganäs O, et al. Optical properties of low band gap alternating copolyfluorenes for photovoltaic devices. J Chem Phys, 2005, 123: 204718(1–9)

    Google Scholar 

  42. Campos L M, Sariciftci N S, Wudl F, et al. Extended photocurrent spectrum of a low band gap polymer in a bulk heterojunction solar cell. Chem Mater, 2005, 17(16): 4031–4033

    Article  Google Scholar 

  43. Thompson B C, Kim Y G, Reynolds J R. Spectral broadening in MEH-PPV: PCBM-based photovoltaic devices via blending with a narrow band gap cyanovinylene-dioxythiophene polymer. Macromolecules, 2005, 38(13): 5359–5362

    Article  Google Scholar 

  44. Shi C J, Yang Y, Pe Q B, et al. Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application. J Am Chem Soc, 2006, 128: 8980–8986

    Article  Google Scholar 

  45. Xiao S Q, Li Y L, Zhu D B, et al. [60]Fullerene-based molecular triads with expanded absorptions in the visible region: Synthesis and photovoltaic properties. J Phys Chem B, 2004, 108: 16677–16685

    Article  Google Scholar 

  46. Hou J H, Yang C H, Li Y F, et al. Poly[3-(5-octyl-thienylene-vinyl)-thiophene]: A side-chain conjugated polymer with very broad absorption band. Chem Commun, 2006, 871: 871–873

    Article  Google Scholar 

  47. Yang R Q, Tian R Y, Cao Y, et al. Deep-red electroluminescent polymers: Synthesis and characterization of new low-band-gap conjugated copolymers for light-emitting diodes and photovoltaic devices. Macromolecules, 2005, 38(2): 244–253

    Article  Google Scholar 

  48. Zhou Q M, Yu G, Cao Y, et al. Fluorence-based low band-gap copolymers for high performance photovoltaic devices. Appl Phys Lett, 2004, 84(10): 1653–1655

    Article  Google Scholar 

  49. Arbogast J W, Foote C S. Photophysical properties of C-70. J Am Chem Soc, 1991, 113(23): 8886–8889

    Article  Google Scholar 

  50. Wienk M M, Kroon J M, Janssen R A J, et al. Efficient methano[70]full erene/MDMO-PPV bulk heterojunction photovoltaic cell. Angew Chem Int Ed, 2003, 42: 3371–3375

    Article  Google Scholar 

  51. Kooistra F B, Mihailetchi V D, Hummelen J C, et al. New C84 derivative and its application in a bulk heterojunction solar cell. Chem Mater, 2006, 18: 3068–3073

    Article  Google Scholar 

  52. Zhao Y, Yuan G X, Leclerc M, et al. A calorimetric study of the phase-transitions in poly(3-hexyl thiophene). Polymer, 1995, 36(11): 2211–2214

    Article  Google Scholar 

  53. Savenije T J, Kroeze J E, Yang X N, et al. The effect of thermal treatment on the morphology and charge carrier dynamics in a polythiophene-fullerene bulk heterojunction. Adv Funct Mater, 2005, 15: 1260–1266

    Article  Google Scholar 

  54. Savenije T J, Kroeze J E, Yang X N, et al. The form ation of crystalline P3HT fibrils upon annealing of a PCBM: P3HT bulk heterojunction. Thin Solid Film, 2006, 511: 2–6

    Article  Google Scholar 

  55. Padinger F, Rittberger R S, Sariciftci N S. Effects of postproduction treatment on plastic solar cell. Adv Funct Mater, 2003, 13(1): 85–88

    Article  Google Scholar 

  56. Yang F, Shteina M, Forrest S R. Morphology control and material mixing by high-temperature organic vapor-phase deposition and its application to thin-film solar cell. J Appl Phys, 2005, 98: 014906

    Google Scholar 

  57. Yang X N, van Duren J K J, Loos J, et al. Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules, 2004, 37(6): 2151–2158

    Article  Google Scholar 

  58. Huang J S, Li G, Yang Y. Influence of composition and heat-treatment on the charge transport properties of poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester blends. Appl Phys Lett, 2005, 87: 112105(1–3)

    Google Scholar 

  59. Ma W L, Yang C Y, Heeger A J, et al. Thermally stable, efficient polymer solar cell with nanoscale control of the interpenetrating network morphology. Adv Funct Mater, 2005, 15(10): 1617–1622

    Article  Google Scholar 

  60. Yang X N, van Duren J K J, Loos J, et al. Crystalline organization of a methanofullerene as used for plastic solar-cell applications. Adv Mater, 2004, 16(9–10): 802–806

    Article  Google Scholar 

  61. Martens T, D’Haen J, Andriessen R, et al. Disclosure of the nanostructure of MDMO-PPV: PCBM bulk hetero-junction organic solar cell by a combination of SPM and TEM. Synth Met, 2003, 138(1–2): 243–247

    Article  Google Scholar 

  62. van Duren J K J, Yang X N, Janssen R A J, et al. Relating the morpology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance. Adv Funct Mater, 2004, 14(5): 425–434

    Article  Google Scholar 

  63. Yang X N, Alexeev A, Loos J, et al. Effect of spatial confinement on the morphology evolution of thin poly(p-phenylenevinylene)/methanofullerene composite films. Macromolecules, 2005, 38(10): 4289–4295

    Article  Google Scholar 

  64. Zhong H F, Yang X N, Loos J, et al. Quantitative insight into morphology evolution of thin PPV/PCBM composite films upon thermal treatment. Macromolecules, 2006, 39(1): 218–223

    Article  Google Scholar 

  65. Huynh W U, Dittmer J J, Alivisatos A P, et al. Controlling the morphology of nanocrystal-polymer composites for solar cell. Adv Funct Mater, 2003, 13(1): 73–79

    Article  Google Scholar 

  66. Beek W J E, Wienk M M, Janssen R A J. Efficient hybrid solar cell from zinc oxide nanoparticles and a conjugated polymer. Adv Mater, 2004, 16(12): 1009–1013

    Article  Google Scholar 

  67. Beek W J E, Wienk M M, Kemerink M, et al. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cell. J Phys Chem B, 2005, 109(19): 9505–9516

    Article  Google Scholar 

  68. Ganesan P, Yang X N, Zuilhof H, et al. Tetrahedral n-type materials: efficient quenching of the excitation of p-type polymers in amorphous films. J Am Chem Soc, 2005, 127(42): 14530–14531

    Article  Google Scholar 

  69. Drolet N, Morin J F, Leclerc M, et al. 2,7-carbazolenevinylene-based oligomer thin-film transistors: High mobility through structural ordering. Adv Mater, 2005, 15(10): 1671–1682

    Article  Google Scholar 

  70. Kim K, Carroll D L. Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene) C60 bulk heterojunction photovoltaic devices. Appl Phys Lett, 2005, 87: 203113(1–3)

    Google Scholar 

  71. Yang C H, Qiao J, Li Y F, et al. Improvement of the performance of polymerC-60 photovoltaic cell by small-molecule doping. Synth Met, 2003, 137: 1521–1522

    Article  Google Scholar 

  72. Brabec C J, Shaheen S E, Denk P, et al. Effect of LiF/metal electrodes on the performance of plastic solar cell. Appl Phys Lett, 2002, 80(7): 1288–1290

    Article  Google Scholar 

  73. Shaheen S E, Brabec C J, Sariciftci N S, et al. Effects of inserting highly polar salts between the cathode and active layer of bulk heterojunction photovoltaic devices. Mat Res Soc Symp Proc, 2001, 665: C5.51.1–5

    Google Scholar 

  74. Brabec C J, Cravino A, Fromherz T, et al. Origin of the open circuit voltage of plastic solar cell. Adv Funct Mater, 2001, 11(5): 374–380

    Article  Google Scholar 

  75. Brabec C J, Cravino A, Fromherz T, et al. The influence of materials work function on the open circuit voltage of plastic solar cell. Thin Solid Films, 2002, 403–404: 368–372

    Article  Google Scholar 

  76. Mihailetchi V D, Hummelen J C, Rispens M T, et al. Cathode dependence of the open-circuit voltage of polymer: fullerene bulk heterojunction solar cell. J Appl Phys, 2003, 94: 6849

    Article  Google Scholar 

  77. de Leeuw D M, Simenon M M J, Einhard R E F, et al. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth Met, 1997, 87(1): 53–59

    Article  Google Scholar 

  78. Liu J S, Kadnikova E N, Fréchet J M J, et al. Polythiophene containing thermally removable solubilizing groups enhances the interface and the performance of polymer-titania hybrid solar cell. J Am Chem Soc, 2004, 126(31): 9486–9487

    Article  Google Scholar 

  79. Krebs F C, Spanggaard H. Significant improvement of polymer solar cell stability. Chem Mater, 2005, 17(21): 5235–5237

    Article  Google Scholar 

  80. Brabec C J, Sariciftci N S. Conjugated polymer based plastic solar cells. In: Hadziioannou G, van Hutten P F, eds. Semiconducting Polymers, Weinheim: Wiley, 1999. Ch. 15: 515–560

    Chapter  Google Scholar 

  81. Scurlock R D, Ogilby P R, Clough R L, et al. Singlet oxygen as a reactive intermediate in the photodegradation of an electroluminescent polymer. J. Am. Chem. Soc. 1995, 117: 10194–10202

    Article  Google Scholar 

  82. Hale G D, Oldenburg S J, Halas N J. Effects of photo-oxidation on conjugated polymer films. Appl Phys Lett, 71: 1483–1485

  83. Neugebauer H, Brabec C J, Sariciftci N S, et al. Stability and photodegradation mechanisms of conjugated polymer/fullerence plastic solar cell. Sol Energy Mater Sol Cell, 2000, 61: 35–42

    Article  Google Scholar 

  84. Müller C D, Falcou A, Meerholz K, et al. Multi-colour organic light-emitting displays by solution processing. Nature, 2003, 421(6925): 829–833

    Article  Google Scholar 

  85. Hikmet R A M, Thomassen R. Electron-beam-induced crosslinking of electroluminescent polymers for the production of multi-color patterned devices. Adv Mater, 2003, 15(2): 115–117

    Article  Google Scholar 

  86. Dree M, Sariciftci N S, Topf C, et al. Stabilization of the nanomorphology of polymer-fullerene “bulk heterojunction” blends using a novel polymerizable fullerene derivative. J Mater Chem, 2005, 15: 5158–5163

    Article  Google Scholar 

  87. Neuteboom E E, Meskers S C J, Janssen R A J, et al. Alternating oligo(p-phenylene vinylene)-perylene bisimide copolymers: Synthesis, photophysics, and photovoltaic properties of a new class of donor-acceptor materials. J Am Chem Soc, 2003, 125(28): 8625–8638

    Article  Google Scholar 

  88. de Boer B, Stalmach U, Hadziioannou G, et al. Supramolecular self-assembly and opto-electronic properties of semiconducting block copolymers. Polymer, 2001, 42(21): 9097–9109

    Article  Google Scholar 

  89. Sun X B, Li Y F, Zhu D B, et al. Novel electroactive and photoactive molecular materials based on conjugated donor-acceptor structures for optoelectronic device applications. J Phys Chem B, 2005, 109: 10786–10792

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang XiaoNiu.

Additional information

Supported by the Initiation Fund of “Hundreds of Talents Program” of Chinese Academy of Sciences and subsidized by the National Basic Research Program of China (Grant No. 2005CB623800)

About this article

Cite this article

Li, L., Lu, G., Yang, X. et al. Progress in polymer solar cell. CHINESE SCI BULL 52, 145–158 (2007). https://doi.org/10.1007/s11434-007-0001-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0001-y

Navigation