Skip to main content
Log in

Dual effects of disorder on the strongly-coupled system composed of a single quantum dot and a photonic crystal L3 cavity

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Light-matter interaction in the strong coupling regime enables light control at the single-photon level. We develop numerical method and analytical expressions to calculate the decay kinetics of an initially excited two-level quantum emitter in dielectric nanostructure and single-mode cavity, respectively. We use these methods to discover the dual effects of disorder on the stronglycoupled system composed of a single quantum dot and a photonic crystal L3 cavity. The quality factor is sensitive to disorder, while the g factor and vacuum Rabi splitting are robust against disorder. A small amount of disorder may either decrease or increase the light localization and the light-matter interaction. Our methods offer flexible and efficient theoretical tools for the investigation of light-matter interaction, especially cavity quantum electrodynamics. Our findings significantly lower the requirements for optimization effort and fabrication precision and open up many promising practical possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, Nat. Phys. 2, 81 (2006).

    Article  Google Scholar 

  2. P. Lodahl, S. Mahmoodian, and S. Stobbe, Rev. Mod. Phys. 87, 347 (2015), arXiv: 1312.1079.

    Article  ADS  Google Scholar 

  3. P. Törmä, and W. L. Barnes, Rep. Prog. Phys. 78, 013901 (2015), arXiv: 1405.1661.

    Article  ADS  Google Scholar 

  4. D. S. Dovzhenko, S. V. Ryabchuk, Y. P. Rakovich, and I. R. Nabiev, Nanoscale 10, 3589 (2018).

    Article  Google Scholar 

  5. H. Walther, B. T. H. Varcoe, B. G. Englert, and T. Becker, Rep. Prog. Phys. 69, 1325 (2006).

    Article  ADS  Google Scholar 

  6. B. Lounis, and M. Orrit, Rep. Prog. Phys. 68, 1129 (2005).

    Article  ADS  Google Scholar 

  7. D. E. Chang, V. Vuletic, and M. D. Lukin, Nat. Photon. 8, 685 (2014).

    Article  ADS  Google Scholar 

  8. H. J. Kimble, Nature 453, 1023 (2008), arXiv: 0806.4195.

    Article  ADS  Google Scholar 

  9. D. Sanvitto, and S. Kéna-Cohen, Nat. Mater. 15, 1061 (2016).

    Article  ADS  Google Scholar 

  10. R. Liu, Z. K. Zhou, Y. C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X. H. Wang, Phys. Rev. Lett. 118, 237401 (2017).

    Article  ADS  Google Scholar 

  11. Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature 425, 944 (2003).

    Article  ADS  Google Scholar 

  12. B. S. Song, S. Noda, T. Asano, and Y. Akahane, Nat. Mater. 4, 207 (2005).

    Article  ADS  Google Scholar 

  13. J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 2008).

    MATH  Google Scholar 

  14. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, Nature 432, 200 (2004).

    Article  ADS  Google Scholar 

  15. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, Nature 445, 896 (2007).

    Article  ADS  Google Scholar 

  16. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, Nature 450, 857 (2007).

    Article  ADS  Google Scholar 

  17. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, Nat. Phys. 4, 859 (2008), arXiv: 0804.2740.

    Article  Google Scholar 

  18. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, Nat. Phys. 6, 279 (2010), arXiv: 0905.3063.

    Article  Google Scholar 

  19. Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, Nat. Photon. 6, 56 (2012).

    Article  ADS  Google Scholar 

  20. H. Kim, T. C. Shen, K. Roy-Choudhury, G. S. Solomon, and E. Waks, Phys. Rev. Lett. 113, 027403 (2014), arXiv: 1310.3638.

    Article  ADS  Google Scholar 

  21. Y. Ota, R. Ohta, N. Kumagai, S. Iwamoto, and Y. Arakawa, Phys. Rev. Lett. 114, 143603 (2015), arXiv: 1503.01855.

    Article  ADS  Google Scholar 

  22. T. M. Sweeney, S. G. Carter, A. S. Bracker, M. Kim, C. S. Kim, L. Yang, P. M. Vora, P. G. Brereton, E. R. Cleveland, and D. Gammon, Nat. Photon. 8, 442 (2014), arXiv: 1402.4494.

    Article  ADS  Google Scholar 

  23. A. Lyasota, S. Borghardt, C. Jarlov, B. Dwir, P. Gallo, A. Rudra, and E. Kapon, J. Cryst. Growth 414, 192 (2015).

    Article  ADS  Google Scholar 

  24. C. Jarlov, É. Wodey, A. Lyasota, M. Calic, P. Gallo, B. Dwir, A. Rudra, and E. Kapon, Phys. Rev. Lett. 117, 076801 (2016).

    Article  ADS  Google Scholar 

  25. S. Lichtmannecker, M. Florian, T. Reichert, M. Blauth, M. Bichler, F. Jahnke, J. J. Finley, C. Gies, and M. Kaniber, Sci. Rep. 7, 7420 (2017), arXiv: 1602.03998.

    Article  ADS  Google Scholar 

  26. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, Nano Lett. 10, 3922 (2010), arXiv: 1005.2204.

    Article  ADS  Google Scholar 

  27. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, Phys. Rev. Lett. 109, 033604 (2012), arXiv: 1202.0806.

    Article  ADS  Google Scholar 

  28. B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin, and M. Lonc R, Nano Lett. 13, 5791 (2013).

    Article  ADS  Google Scholar 

  29. S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vuckovic, A. Majumdar, and X. Xu, Nature 520, 69 (2015).

    Article  ADS  Google Scholar 

  30. A. Gopinath, E. Miyazono, A. Faraon, and P. W. K. Rothemund, Nature 535, 401 (2016).

    Article  ADS  Google Scholar 

  31. F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, Nat. Photon. 10, 420 (2016).

    Article  ADS  Google Scholar 

  32. M. S. Hwang, H. R. Kim, K. H. Kim, K. Y. Jeong, J. S. Park, J. H. Choi, J. H. Kang, J. M. Lee, W. I. Park, J. H. Song, M. K. Seo, and H. G. Park, Nano Lett. 17, 1892 (2017).

    Article  ADS  Google Scholar 

  33. Y. Ota, R. Moriya, N. Yabuki, M. Arai, M. Kakuda, S. Iwamoto, T. Machida, and Y. Arakawa, Appl. Phys. Lett. 110, 223105 (2017).

    Article  ADS  Google Scholar 

  34. A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, Nano Lett. 13, 3281 (2013).

    Article  ADS  Google Scholar 

  35. G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, Phys. Rev. Lett. 114, 157401 (2015), arXiv: 1501.02123.

    Article  ADS  Google Scholar 

  36. X. Chen, Y. H. Chen, J. Qin, D. Zhao, B. Ding, R. J. Blaikie, and M. Qiu, Nano Lett. 17, 3246 (2017), arXiv: 1607.07620.

    Article  ADS  Google Scholar 

  37. B. M. Garraway, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 369, 1137 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  38. W. J. Fan, Z. B. Hao, Z. Li, Y. S. Zhao, and Y. Luo, J. Lightw. Technol. 28, 1455 (2010).

    Article  ADS  Google Scholar 

  39. S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O’Faolain, Phys. Rev. B 84, 045423 (2011).

    Article  ADS  Google Scholar 

  40. M. Minkov, U. P. Dharanipathy, R. Houdré, and V. Savona, Opt. Express 21, 28233 (2013).

    Article  ADS  Google Scholar 

  41. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, Phys. Rev. B 79, 085112 (2009).

    Article  ADS  Google Scholar 

  42. T. Asano, B. S. Song, and S. Noda, Opt. Express 14, 1996 (2006).

    Article  ADS  Google Scholar 

  43. Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, Opt. Express 19, 11916 (2011).

    Article  ADS  Google Scholar 

  44. R. Benevides, F. G. S. Santos, G. O. Luiz, G. S. Wiederhecker, and T. P. M. Alegre, Sci. Rep. 7, 2491 (2017), arXiv: 1701.03410.

    Article  ADS  Google Scholar 

  45. Y. Akahane, T. Asano, B. S. Song, and S. Noda, Opt. Express 13, 1202 (2005).

    Article  ADS  Google Scholar 

  46. Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, Opt. Express 15, 17206 (2007).

    Article  ADS  Google Scholar 

  47. Y. Tanaka, T. Asano, and S. Noda, J. Lightwave Technol. 26, 1532 (2008).

    Article  ADS  Google Scholar 

  48. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, Opt. Express 17, 18093 (2009).

    Article  ADS  Google Scholar 

  49. Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, Appl. Phys. Lett. 104, 241101 (2014).

    Article  ADS  Google Scholar 

  50. D. Wang, Z. Yu, Y. Liu, X. Guo, C. Shu, S. Zhou, and J. Zhang, J. Opt. 15, 125102 (2013).

    Article  ADS  Google Scholar 

  51. M. Minkov, and V. Savona, Sci. Rep. 4, 5124 (2014).

    Article  ADS  Google Scholar 

  52. P. W. Anderson, Phys. Rev. 109, 1492 (1958).

    Article  ADS  Google Scholar 

  53. J. Topolancik, B. Ilic, and F. Vollmer, Phys. Rev. Lett. 99, 253901 (2007).

    Article  ADS  Google Scholar 

  54. A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, Phys. Today 62, 24 (2009).

    Article  Google Scholar 

  55. D. S. Wiersma, Nat. Photon. 7, 188 (2013).

    Article  ADS  Google Scholar 

  56. P. D. García, G. Kiršanske, A. Javadi, S. Stobbe, and P. Lodahl, Phys. Rev. B 96, 144201 (2017), arXiv: 1709.10310.

    Article  ADS  Google Scholar 

  57. T. Crane, O. J. Trojak, J. P. Vasco, S. Hughes, and L. Sapienza, ACS Photon. 4, 2274 (2017).

    Article  Google Scholar 

  58. L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, Science 327, 1352 (2010), arXiv: 1003.2525.

    Article  ADS  Google Scholar 

  59. J. Liu, P. D. Garcia, S. Ek, N. Gregersen, T. Suhr, M. Schubert, J. Mørk, S. Stobbe, and P. Lodahl, Nat. Nanotech. 9, 285 (2014).

    Article  ADS  Google Scholar 

  60. P. D. García, and P. Lodahl, Annal. Phys. 529, 1600351 (2017), arXiv: 1611.02038.

    Article  ADS  Google Scholar 

  61. H. Thyrrestrup, S. Smolka, L. Sapienza, and P. Lodahl, Phys. Rev. Lett. 108, 113901 (2012), arXiv: 1112.5674.

    Article  ADS  Google Scholar 

  62. J. Gao, S. Combrie, B. Liang, P. Schmitteckert, G. Lehoucq, S. Xavier, X. A. Xu, K. Busch, D. L. Huffaker, A. De Rossi, and C. W. Wong, Sci. Rep. 3, 1994 (2013), arXiv: 1306.2042.

    Article  ADS  Google Scholar 

  63. J. P. Vasco, and S. Hughes, Phys. Rev. B 95, 224202 (2017), arXiv: 1701.09139.

    Article  ADS  Google Scholar 

  64. J. P. Vasco, and S. Hughes, ACS Photon. 5, 1262 (2018).

    Article  Google Scholar 

  65. X. H. Wang, R. Wang, B. Y. Gu, and G. Z. Yang, Phys. Rev. Lett. 88, 093902 (2002).

    Article  ADS  Google Scholar 

  66. X. H. Wang, B. Y. Gu, R. Wang, and H. Q. Xu, Phys. Rev. Lett. 91, 113904 (2003).

    Article  ADS  Google Scholar 

  67. G. Chen, Y. C. Yu, X. L. Zhuo, Y. G. Huang, H. Jiang, J. F. Liu, C. J. Jin, and X. H. Wang, Phys. Rev. B 87, 195138 (2013).

    Article  ADS  Google Scholar 

  68. E. M. Purcell, Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  69. A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, Appl. Phys. Lett. 90, 241117 (2007).

    Article  ADS  Google Scholar 

  70. A. Taflove, and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (third edition) (Artech House, London, 2005).

    MATH  Google Scholar 

  71. G. Chen, J. F. Liu, H. Jiang, X. L. Zhuo, Y. C. Yu, C. Jin, and X. H. Wang, Nanoscale Res. Lett. 8, 187 (2013).

    Article  ADS  Google Scholar 

  72. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, Phys. Rev. E 65, 066611 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  73. L. Ramunno, and S. Hughes, Phys. Rev. B 79, 161303 (2009).

    Article  ADS  Google Scholar 

  74. A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, Science 308, 1158 (2005).

    Article  ADS  Google Scholar 

  75. N. Mann, A. Javadi, P. D. García, P. Lodahl, and S. Hughes, Phys. Rev. A 92, 023849 (2015), arXiv: 1505.02836.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Hua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Liu, JF., Yu, YC. et al. Dual effects of disorder on the strongly-coupled system composed of a single quantum dot and a photonic crystal L3 cavity. Sci. China Phys. Mech. Astron. 62, 64211 (2019). https://doi.org/10.1007/s11433-018-9290-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9290-5

Keywords

Navigation