Skip to main content
Log in

Two-photon reduction: a cost-effective method for fabrication of functional metallic nanostructures

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Metallic nanostructures have underpinned plasmonic-based advanced photonic devices in a broad range of research fields over the last decade including physics, engineering, material science and bioscience. The key to realizing functional plasmonic resonances that can manipulate light at the optical frequencies relies on the creation of conductive metallic structures at the nanoscale with low structural defects. Currently, most plasmonic nanostructures are fabricated either by electron beam lithography (EBL) or by focused ion beam (FIB) milling, which are expensive, complicated and time-consuming. In comparison, the direct laser writing (DLW) technique has demonstrated its high spatial resolution and cost-effectiveness in three-dimensional fabrication of micro/nanostructures. Furthermore, the recent breakthroughs in superresolution nanofabrication and parallel writing have significantly advanced the fabrication resolution and throughput of the DLW method and made it one of the promising future nanofabrication technologies with low-cost and scalability. In this review, we provide a comprehensive summary of the state-of-the-art DLW fabrication technology for nanometer scale metallic structures. The fabrication mechanisms, different material choices, fabrication capability, including resolution, conductivity and structure surface smoothness, as well as the characterization methods and achievable devices for different applications are presented. In particular, the development trends of the field and the perspectives for future opportunities and challenges are provided at the end of the review. It has been demonstrated that the quality of the metallic structures fabricated using the DLW method is excellent compared with other methods providing a new and enabling platform for functional nanophotonic device fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, Rep. Prog. Phys. 75, 036501 (2012).

    Article  ADS  Google Scholar 

  2. K. Terzaki, N. Vasilantonakis, A. Gaidukeviciute, C. Reinhardt, C. Fotakis, M. Vamvakaki, and M. Farsari, Opt. Mater. Express 1, 586 (2011).

    Article  Google Scholar 

  3. X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, Thin Solid Films 453-454, 518 (2004).

    Article  ADS  Google Scholar 

  4. H. Hidai, and H. Tokura, Appl. Surface Sci. 174, 118 (2001).

    Article  ADS  Google Scholar 

  5. D. Kim, S. Jeong, B. K. Park, and J. Moon, Appl. Phys. Lett. 89, 264101 (2006).

    Article  ADS  Google Scholar 

  6. A. Gupta, and R. Jagannathan, Appl. Phys. Lett. 51, 2254 (1987).

    Article  ADS  Google Scholar 

  7. T. Cacouris, G. Scelsi, P. Shaw, R. Scarmozzino, R. M. Osgood, and R. R. Krchnavek, Appl. Phys. Lett. 52, 1865 (1988).

    Article  ADS  Google Scholar 

  8. A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, and H. Giessen, Adv. Mater. 23, 3018 (2011).

    Article  Google Scholar 

  9. S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K. T. Kim, Y. K. Yoon, A. Urbas, and P. N. Prasad, ACS Nano 5, 1947 (2011).

  10. Y. Son, T. W. Lim, D. Y. Yang, P. Prabhakaran, K. S. Lee, J. Bosson, O. Stephan, and P. L. Baldeck, IJNM 6, 219 (2010).

    Article  Google Scholar 

  11. S. Y. Kang, K. Vora, and E. Mazur, Nanotechnology 26, 121001 (2015).

    Article  ADS  Google Scholar 

  12. Y. Cao, and M. Gu, Appl. Phys. Lett. 103, 213104 (2013).

    Article  ADS  Google Scholar 

  13. R. P. Seisyan, Tech. Phys. 56, 1061 (2011).

    Article  Google Scholar 

  14. L. J. Guo, Adv. Mater. 19, 495 (2007).

    Article  Google Scholar 

  15. C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, Appl. Surface Sci. 164, 111 (2000).

    Article  ADS  Google Scholar 

  16. L. A. Giannuzzi, and F. A. Stevie, Micron 30, 197 (1999).

    Article  Google Scholar 

  17. X. Luo, and T. Ishihara, Appl. Phys. Lett. 84, 4780 (2004).

    Article  ADS  Google Scholar 

  18. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).

    Article  ADS  Google Scholar 

  19. P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, and X. Luo, Appl. Phys. Lett. 106, 093110 (2015).

    Article  ADS  Google Scholar 

  20. T. C. Chong, M. H. Hong, and L. P. Shi, Laser Photon. Rev. 4, 123 (2010).

    Article  Google Scholar 

  21. D. B. Chrisey, A. Pique, J. Fitz-Gerald, R. C. Y. Auyeung, R. A. McGill, H. D. Wu, and M. Duignan, Appl. Surface Sci. 154-155, 593 (2000).

    Article  ADS  Google Scholar 

  22. M. M. Hossain, G. Chen, B. Jia, X. H. Wang, and M. Gu, Opt. Express 18, 9048 (2010).

    Article  ADS  Google Scholar 

  23. M. M. Hossain, and M. Gu, Laser Photon. Rev. 8, 233 (2014).

    Article  Google Scholar 

  24. B. Jia, J. Li, and M. Gu, Aust. J. Chem. 60, 484 (2007).

    Article  Google Scholar 

  25. B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, Anal. Chem. 78, 3198 (2006).

    Article  Google Scholar 

  26. J. Li, B. Jia, G. Zhou, and M. Gu, Opt. Express 14, 10740 (2006).

    Article  ADS  Google Scholar 

  27. Y. L. Zhang, Q. D. Chen, H. Xia, and H. B. Sun, Nano Today 5, 435 (2010).

    Article  Google Scholar 

  28. E. B. Kley, Microelectronic Eng. 34, 261 (1997).

    Article  Google Scholar 

  29. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, Appl. Phys. A 77, 229 (2003).

    ADS  Google Scholar 

  30. C. N. LaFratta, D. Lim, K. O'Malley, T. Baldacchini, and J. T. Fourkas, Chem. Mater. 18, 2038 (2006).

    Article  Google Scholar 

  31. L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. Huis in’tVeld, and V. Kovalenko, CIRP Ann.-Manuf. Tech. 60, 735 (2011).

    Article  Google Scholar 

  32. H. E. Williams, Z. Luo, and S. M. Kuebler, Opt. Express 20, 25030 (2012).

    Article  ADS  Google Scholar 

  33. Q. Z. Zhao, J. R. Qiu, X. W. Jiang, E. W. Dai, C. H. Zhou, and C. S. Zhu, Opt. Express 13, 2089 (2005).

    Article  ADS  Google Scholar 

  34. H. B. Sun, and S. Kawata, J. Lightw. Technol. 21, 624 (2003).

    Article  ADS  Google Scholar 

  35. W. Zhang, and Y. L. Yao, J. Manuf. Sci. Eng. 124, 369 (2002).

    Article  Google Scholar 

  36. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, Science 325, 1513 (2009).

    Article  ADS  Google Scholar 

  37. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nat. Mater. 7, 31 (2008).

    Article  ADS  Google Scholar 

  38. S. Maruo, and J. T. Fourkas, Laser Photon. Rev. 2, 100 (2008).

    Article  Google Scholar 

  39. Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, Small 5, 1144 (2009).

    Google Scholar 

  40. T. Tanaka, A. Ishikawa, and S. Kawata, Appl. Phys. Lett. 88, 081107 (2006).

    Article  ADS  Google Scholar 

  41. J. Li, M. M. Hossain, B. Jia, D. Buso, and M. Gu, Opt. Express 18, 4491 (2010).

    Article  ADS  Google Scholar 

  42. Y. G. Bi, J. Feng, Y. F. Li, Y. L. Zhang, Y. S. Liu, L. Chen, Y. F. Liu, L. Guo, S. Wei, and H. B. Sun, ACS Photon. 1, 690 (2014).

  43. Y. L. Zhang, L. Guo, H. Xia, Q. D. Chen, J. Feng, and H. B. Sun, Adv. Opt. Mater. 2, 10 (2014).

    Article  ADS  Google Scholar 

  44. D. Lau, and S. Furman, Appl. Surface Sci. 255, 2159 (2008).

    Article  ADS  Google Scholar 

  45. L. Huang, Y. Liu, L. C. Ji, Y. Q. Xie, T. Wang, and W. Z. Shi, Carbon 49, 2431 (2011).

    Article  Google Scholar 

  46. B. Li, X. Zhang, X. Li, L. Wang, R. Han, B. Liu, W. Zheng, X. Li, and Y. Liu, Chem. Commun. 46, 3499 (2010).

    Article  Google Scholar 

  47. S. Tabrizi, Y. Cao, B. P. Cumming, B. Jia, and M. Gu, Adv. Opt. Mater. 4, 529 (2016).

    Article  Google Scholar 

  48. N. V. Tkachenko, Optical Spectroscopy: Methods and Instrumentations (Elsevier, Amsterdam, 2006).

    Google Scholar 

  49. A. V. Kachynski, A. Pliss, A. N. Kuzmin, T. Y. Ohulchanskyy, A. Baev, J. Qu, and P. N. Prasad, Nat. Photon 8, 455 (2014).

    Article  ADS  Google Scholar 

  50. A. Ishikawa, JLMN 7, 11 (2012).

    Article  Google Scholar 

  51. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, Berlin, Heidelberg, Dordrecht, and New York, 2007).

    Google Scholar 

  52. G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, and A. G. Dillard, Opt. Lett. 20, 435 (1995).

    Article  ADS  Google Scholar 

  53. K. Miura, J. R. Qiu, T. Mitsuyu, and K. Hirao, Proc. SPIE, 3618, 141 (1999).

    Article  ADS  Google Scholar 

  54. J. Qiu, Chem. Record 4, 50 (2004).

    Article  Google Scholar 

  55. Y. Li, S. Chemerisov, and J. Lewellen, Phys. Rev. ST Accel. Beams 12, 020702 (2009).

    Article  ADS  Google Scholar 

  56. D. W. Lewis, Resource Conservation by Use of Iron and Steel Slags, in Extending Aggregate Resources (American Society for Testing and Materials, 1982), pp. 31–42.

    Book  Google Scholar 

  57. Q. Liu, X. Duan, and C. Peng, Novel optical technologies for nanofabrication (Springer, New York, 2014).

    Book  Google Scholar 

  58. M. Sakamoto, M. Fujistuka, and T. Majima, J. Photochem. Photobio. C-Photochem. Rev. 10, 33 (2009).

    Article  Google Scholar 

  59. M. Bom, and E. Wolf, Principles of Optics (Pergamon, New York, 1980), pp. 747–754.

    Google Scholar 

  60. Z. Zhou, J. Xu, Y. Liao, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, Opt. Commun. 282, 1370 (2009).

    Article  ADS  Google Scholar 

  61. A. S. Quick, H. Rothfuss, A. Welle, B. Richter, J. Fischer, M. Wegener, and C. Barner-Kowollik, Adv. Funct. Mater. 24, 3571 (2014).

    Article  Google Scholar 

  62. E. Kymakis, K. Savva, M. M. Stylianakis, C. Fotakis, and E. Stratakis, Adv. Funct. Mater. 23, 2742 (2013).

    Article  Google Scholar 

  63. K. Kaneko, H. B. Sun, X. M. Duan, and S. Kawata, Appl. Phys. Lett. 83, 1426 (2003).

    Article  ADS  Google Scholar 

  64. W. J. Brown, S. G. Anderson, C. P. J. Barty, S. M. Betts, R. Booth, J. K. Crane, R. R. Cross, D. N. Fittinghoff, D. J. Gibson, F. V. Hartemann, E. P. Hartouni, J. Kuba, G. P. Le Sage, D. R. Slaughter, A. M. Tremaine, A. J. Wootton, P. T. Springer, and J. B. Rosenzweig, Phys. Rev. ST Accel. Beams 7, 060702 (2004).

    Article  ADS  Google Scholar 

  65. H. Hada, Y. Yonezawa, Y. Yoshida Akio, and A. Kurakake, J. Phys. Chem. 80, 2728 (1976).

  66. B. Fisette, and M. Meunier, Proc. SPIE, 5578, 677 (2004).

    Article  ADS  Google Scholar 

  67. F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, Adv. Mater. 14, 194 (2002).

    Article  Google Scholar 

  68. T. Baldacchini, A. C. Pons, J. Pons, C. N. Lafratta, J. T. Fourkas, Y. Sun, and M. J. Naughton, Opt. Express 13, 1275 (2005).

    Article  ADS  Google Scholar 

  69. N. Tsutsumi, K. Nagata, and W. Sakai, Appl. Phys. A 103, 421 (2011).

    Article  ADS  Google Scholar 

  70. A. Ishikawa, T. Tanaka, and S. Kawata, Appl. Phys. Lett. 89, 113102 (2006).

    Article  ADS  Google Scholar 

  71. Y. Y. Cao, X. Z. Dong, N. Takeyasu, T. Tanaka, Z. S. Zhao, X. M. Duan, and S. Kawata, Appl. Phys. A 96, 453 (2009).

    Article  ADS  Google Scholar 

  72. W. E. Lu, Y. L. Zhang, M. L. Zheng, Y. P. Jia, J. Liu, X. Z. Dong, Z. S. Zhao, C. B. Li, Y. Xia, T. C. Ye, and X. M. Duan, Opt. Mater. Express 3, 1660 (2013).

    Article  Google Scholar 

  73. T. Itakura, K. Torigoe, and K. Esumi, Langmuir 11, 4129 (1995).

    Article  Google Scholar 

  74. B. B. Xu, R. Zhang, H. Wang, X. Q. Liu, L. Wang, Z. C. Ma, Q. D. Chen, X. Z. Xiao, B. Han, and H. B. Sun, Nanoscale 4, 6955 (2012).

    Article  ADS  Google Scholar 

  75. W. E. Lu, M. L. Zheng, W. Q. Chen, Z. S. Zhao, and X. M. Duan, Phys. Chem. Chem. Phys. 14, 11930 (2012).

    Article  Google Scholar 

  76. Z. Gan, Y. Cao, R. A. Evans, and M. Gu, Nat. Commun. 4, 2061 (2013).

    ADS  Google Scholar 

  77. F. M. Smits, Bell Syst. Technical J. 37, 711 (1958).

    Article  Google Scholar 

  78. B. B. Xu, H. Xia, L. G. Niu, Y. L. Zhang, K. Sun, Q. D. Chen, Y. Xu, Z. Q. Lv, Z. H. Li, H. Misawa, and H. B. Sun, Small 6, 1762 (2010).

    Article  Google Scholar 

  79. B. B. Xu, Y. L. Zhang, H. Xia, W. F. Dong, H. Ding, and H. B. Sun, Lab Chip 13, 1677 (2013).

    Article  Google Scholar 

  80. H. Wang, S. Liu, Y. L. Zhang, J. N. Wang, L. Wang, H. Xia, Q. D. Chen, H. Ding, and H. B. Sun, Sci. Tech. Adv. Mater. 16, 024805 (2015).

    Article  Google Scholar 

  81. K. Vora, S. Y. Kang, and E. Mazur, JoVE 69, UNSP e4399 (2012).

    Google Scholar 

  82. K. Vora, S. Y. Kang, S. Shukla, and E. Mazur, Appl. Phys. Lett. 100, 063120 (2012).

    Article  ADS  Google Scholar 

  83. R. Ameloot, M. B. J. Roeffaers, G. De Cremer, F. Vermoortele, J. Hofkens, B. F. Sels, and D. E. De Vos, Adv. Mater. 23, 1788 (2011).

    Article  Google Scholar 

  84. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).

    Article  ADS  Google Scholar 

  85. N. Engheta, and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (John Wiley & Sons, Hoboken, 2006).

    Book  Google Scholar 

  86. S. Zouhdi, S. Ari, and P. Alexey, Metamaterials and Plasmonics: Fundamentals, Modelling, Applications (Springer Science & Business Media, Berlin, Heidelberg, Dordrecht, and New York, 2008).

    Google Scholar 

  87. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, Phys. Rev. Lett. 102, 113902 (2009).

    Article  ADS  Google Scholar 

  88. F. Capolino, Theory and Phenomena of Metamaterials (CRC Press, New York, 2009).

    Book  Google Scholar 

  89. A. Vallecchi, S. Campione, and F. Capolino, J. Nanophoton 4, 041577 (2010).

    Article  ADS  Google Scholar 

  90. R. Marques, F. Mesa, J. Martel, and F. Medina, IEEE Trans. Antennas Propagat. 51, 2572 (2003).

    Article  ADS  Google Scholar 

  91. R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, Phys. Rev. E 76, 026606 (2007).

    Article  ADS  Google Scholar 

  92. C. Caloz, and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (John Wiley & Sons, Hoboken, 2005).

    Book  Google Scholar 

  93. A. K. Iyer, P. C. Kremer, and G. V. Eleftheriades, Opt. Express 11, 696 (2003).

    Article  ADS  Google Scholar 

  94. V. M. Shalaev, Nat. Photon. 1, 41 (2007).

    Article  ADS  Google Scholar 

  95. T. M. Grzegorczyk, and J. A. Kong, J. Electromag. Waves Appl. 20, 2053 (2006).

    Article  Google Scholar 

  96. W. Xu, L. W. Li, H. Y. Yao, T. S. Yeo, and Q. Wu, J. Electromag. Waves Appl. 20, 13 (2006).

    Article  Google Scholar 

  97. S. A. Maier, Opt. Express 14, 1957 (2006).

    Article  ADS  Google Scholar 

  98. M. Moskovits, J. Raman Spectrosc. 36, 485 (2005).

    Article  ADS  Google Scholar 

  99. C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, Opt. Express 17, 21581 (2009).

    Article  ADS  Google Scholar 

  100. I. Izquierdo-Lorenzo, S. Jradi, and P. M. Adam, RSC Adv. 4, 4128 (2014).

    Article  Google Scholar 

  101. S. J. Lee, B. D. Piorek, C. D. Meinhart, and M. Moskovits, Nano Lett. 10, 1329 (2010).

    Article  ADS  Google Scholar 

  102. B. B. Xu, Z. C. Ma, L. Wang, R. Zhang, L. G. Niu, Z. Yang, Y. L. Zhang, W. H. Zheng, B. Zhao, Y. Xu, Q. D. Chen, H. Xia, and H. B. Sun, Lab Chip 11, 3347 (2011).

    Article  Google Scholar 

  103. B. B. Xu, R. Zhang, X. Q. Liu, H. Wang, Y. L. Zhang, H. B. Jiang, L. Wang, Z. C. Ma, J. F. Ku, F. S. Xiao, and H. B. Sun, Chem. Commun. 48, 1680 (2012).

    Article  Google Scholar 

  104. J. G. Ng, D. E. G. Watson, J. Sigwarth, A. McCarthy, H. Suyal, D. P. Hand, and M. P. Y. Desmulliez, An Additive Method for Photopatterning of Metals on Flexible Substrates, in Proceedings of the 36th International MATADOR Conference (Springer, London, 2010), pp. 389–392.

    Chapter  Google Scholar 

  105. J. A. Huang, Y. L. Zhang, H. Ding, and H. B. Sun, Adv. Opt. Mater. 3, 618 (2015).

    Article  Google Scholar 

  106. H. Lin, B. Jia, and M. Gu, Opt. Lett. 36, 406 (2011).

    Article  ADS  Google Scholar 

  107. H. Lin, and M. Gu, Appl. Phys. Lett. 102, 084103 (2013).

    Article  ADS  Google Scholar 

  108. F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, Opt. Express 14, 800 (2006).

    Article  ADS  Google Scholar 

  109. E. T. Castellana, S. Kataoka, F. Albertorio, and P. S. Cremer, Anal. Chem. 78, 107 (2006).

    Article  Google Scholar 

  110. S. Maruo, and T. Saeki, Opt. Express 16, 1174 (2008).

    Article  ADS  Google Scholar 

  111. E. P. Furlani, H. S. Jee, H. S. Oh, A. Baev, and P. N. Prasad, Adv. OptoElectron. 2012, 1 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BaoHua Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabrizi, S., Cao, Y., Lin, H. et al. Two-photon reduction: a cost-effective method for fabrication of functional metallic nanostructures. Sci. China Phys. Mech. Astron. 60, 034201 (2017). https://doi.org/10.1007/s11433-016-0447-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-0447-6

Keywords

Navigation