Skip to main content
Log in

Alloying effects of the elements with a positive heat of mixing on the glass forming ability of Al-La-Ni amorphous alloys

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The effects of Sn and Ga additions on the glass forming ability (GFA) of (Al86La5Ni9)100−x Sn x (x=0, 0.2, 0.3, 0.5, 0.7, 1 and 2 at.%) and (Al86La5Ni9)100−x Ga x (x=0, 0.2, 0.5, 1 and 1.5 at.%) alloys were systematically investigated. Unlike common microalloying methods, both Sn and Ga have a positive heat of mixing with the main component of Al. Our analysis confirmed that proper Sn addition can suppress the strong formation of α-Al and enhance the GFA due to the positive heat of mixing between Sn and Al and the large difference in their atomic sizes. While the addition of Ga to the base alloy acted as the nucleation cites for α-Al and accelerated precipitation of the α-Al phase, thus deteriorating the GFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Inoue A. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog Mater Sci, 1998, 43: 365–520

    Article  Google Scholar 

  2. He Y, Poon S J, Shiflet G J. Synthesis and properties of metallic glasses that contain aluminum. Science, 1988, 241: 1640–1642

    Article  ADS  Google Scholar 

  3. Yang H, Wang J Q, Li Y. Influence of TM and RE elements on glass formation of the ternary Al-TM-RE systems. J Non-Cryst Solids, 2008, 354: 3473–3479

    Article  ADS  Google Scholar 

  4. Wu N C, Kan D, Zuo L, et al. Efficient atomic packing-chemistry coupled model and glass formation formation in ternary Al-based metallic glasses. Intermetallics, 2013, 39: 1–4

    Article  Google Scholar 

  5. Sheng H W, Cheng Y Q, Lee P L, et al. Atomic packing in multicomponent aluminum-based metallic glasses. Acta Mater, 2008, 56: 6264–6272

    Article  Google Scholar 

  6. Yang B J, Yao J H, Zhang J, et al. Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength. Scripta Mater, 2009, 61: 423–426

    Article  Google Scholar 

  7. Zhuo L C, Pang S J, Wang H, et al. Ductile bulk Aluminum-based alloys with good glass-forming ability and high strength. Chin Phys Lett, 2009, 26: 066402

    Article  ADS  Google Scholar 

  8. Greer A L. Metallic glasses. Science, 1995, 267: 1947–1953

    Article  ADS  Google Scholar 

  9. Miracle D B. A structure model for metallic glasses. Nat Mater, 2004, 3: 697–702

    Article  ADS  Google Scholar 

  10. Poon S J, Shiflet G J, Guo F Q, et al. Glass formability of ferrous- and aluminum-based structural metallic alloys. J Non-Cryst Solids, 2003, 317: 1–9

    Article  ADS  Google Scholar 

  11. Angell C A. Formation of glasses from liquids and biopolymers. Science, 1995, 267: 1924–1935

    Article  ADS  Google Scholar 

  12. Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater, 2000, 48: 279–306

    Article  Google Scholar 

  13. Greer A L. Confusion by design. Nature, 1993, 366: 303–304

    Article  ADS  Google Scholar 

  14. Turnbull D. Under what condition can a glass be formed. Contemp Phys, 1969, 10: 473–488

    Article  ADS  Google Scholar 

  15. Wang W H. Roles of minor additions in formation and properties of bulk metallic glasses. Prog Mater Sci, 2007, 52: 540–596

    Article  Google Scholar 

  16. Liu C T, Lu Z P. Effect of minor alloying addition on glass formation in bulk metallic glasses. Intermetallics, 2005, 13: 415–418

    Article  Google Scholar 

  17. Zhang B, Wang R J, Zhao D Q, et al. Superiorglass-forming ability through microalloying in cerium-based alloys. Phys Rev B, 2006, 73: 092201

    Article  ADS  Google Scholar 

  18. Lu Z P, Liu C T, Thompson J R, et al. Structural amorphous steels. Phys Rev Lett, 2004, 92: 245503

    Article  ADS  Google Scholar 

  19. Lu Z P, Liu C T, Poter W D. Role of yttrium in glass formation of Fe-based bulk metallic glasses. Appl Phys Lett, 2003, 83: 2581–2583

    Article  ADS  Google Scholar 

  20. Kundig A A, Lepori D, Perry A J, et al. Influence of low oxygen contents and alloy refinement on the glass forming ability of Zr52.5Cu17.9Ni14.6Al10Ti5. Mater Trans, 2002, 43: 3206–3210

    Article  Google Scholar 

  21. Wang J Q, Liu Y H, Imhoff S, et al. Enhance the thermal stability and glass forming ability of Al-based metallic glass by Ca minor-alloying. Intermetallics, 2012, 29: 35–40

    Article  Google Scholar 

  22. Li G H, Bian X F, Song K K, et al. Effect of Si addition on glass forming ability and thermal stability of Al-Fe-La alloys. J Alloys Compd, 2009, 471: L47–L50

    Article  Google Scholar 

  23. Chen Z P, Gao J E, Wu Y, et al. Role of rare-earth elements in glass formation of Al-Ca-Ni amorphous alloys. J Alloys Compd, 2012, 513: 387–392

    Article  Google Scholar 

  24. Jiao Z B, Li H X, Gao J E, et al. Effects of alloying elements on glass formation, mechanical and soft-magnetic properties of Fe-based metallic glasses. Intermetallics, 2011, 19: 1502–1508

    Article  Google Scholar 

  25. Xia J, Qiang J, Wang Y, et al. Ternary bulk metallic glasses formed by minor alloying of Cu8Zr5 icosahedron. Appl Phys Lett, 2006, 88: 101907

    Article  ADS  Google Scholar 

  26. Sanders W S, Warner J S, Miracle D B. Stability of Al-rich glasses in the Al-La-Ni system. Intermetallics, 2006, 14: 348–351

    Article  Google Scholar 

  27. Huang Z H, Li J F, Rao Q L, et al. Effects of La content on the glass transition and crystallization process of Al-La-Ni amorphous alloys. Intermetallics, 2007, 15: 1139–1146

    Article  Google Scholar 

  28. Mirkovié D, Gröbner J, Schmid-Fetzer R. Liquid demixing and microstructure formation in ternary Al-Sn-Cu alloys. Mater Sci Eng A, 2008, 487: 456–467

    Article  Google Scholar 

  29. Lu Z P, Ma D, Liu C T, et al. Competitive formation of glasses and glass-matrix composites. Intermetallics, 2007, 15: 253–259

    Article  Google Scholar 

  30. Takeuchi A, Inoue A. Classiication of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater Trans, 2005, 46: 2817–2829

    Article  Google Scholar 

  31. ASM Handbook Committee. ASM Handbook. Volume 3 Alloy Phase Diagrams. Ohio: Metals Park, 1992. 1–1741

    Google Scholar 

  32. Senkov O N, Miracle D B. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater Res Bull, 2001, 36: 2183–2198

    Article  Google Scholar 

  33. Lu Z P, Liu C T. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater, 2002, 50: 3501–3512

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhaoPing Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Gao, J., Wu, Y. et al. Alloying effects of the elements with a positive heat of mixing on the glass forming ability of Al-La-Ni amorphous alloys. Sci. China Phys. Mech. Astron. 57, 122–127 (2014). https://doi.org/10.1007/s11433-013-5253-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5253-8

Keywords

Navigation