Skip to main content
Log in

Organic-ferromagnetic hetero-structures with spin transport properties and fundamental physical effects

  • Review
  • Progress of Projects Supported by NSFC · Spintronics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Organic spintronics refers to control spin dependent transport through organic materials. In the last two decades, extraordinary development has been achieved for organic-spintronics. A series of theoretical and experimental studies have been done to reveal the mechanisms of spin dependent transport properties. The theoretical analysis is based on the non-equilibrium Green’s function formalism provides a mathematical framework for solving the transmission coefficients in the Landauer formula from atomistic first principles without any phenomenological parameters. In this article, we provide a brief theoretical review on organic spintronics devices and device physics therein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Naber W J M, Faez S, van der Wiel W G. Organic spintronics. J Phys D-Appl Phys, 2007, 40: R205–R228

    ADS  Google Scholar 

  2. Wang T X, Zeng Z M, Du G X, et al. Core composite film for a magnetic/nonmagnetic/magnetic multilayer thin film and its useage. PRC Patent, ZL200510056941. 8; Japan Patent, JP48806692011129

  3. Dediu V A, Hueso L E, Bergenti I, et al. Spin routes in organic semiconductors. Nat Mater, 2009, 8: 707–716

    ADS  Google Scholar 

  4. Gobbi M, Bedoya-Pinto A, Golmar F, et al. C60-based hot-electron magnetic tunnel transistor. Appl Phys Lett, 2012, 101: 102404

    ADS  Google Scholar 

  5. Tsukagoshi K, Alphenaar B W, Ago H. Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature, 1999, 401: 572–574

    ADS  Google Scholar 

  6. Wei X H, Han X F, Langford R M, et al. Spin transport in multi wall carbon nanotubes with Co electrodes. Chin Phys Lett, 2006, 23: 2852–2855

    ADS  Google Scholar 

  7. Dediu V, Murgia M, Matacotta F C, et al. Room temperature spin polarized injection in organic semiconductor. Solid State Commun, 2002, 122: 181–184

    ADS  Google Scholar 

  8. Xiong Z H, Wu D, Vardeny Z V, et al. Giant magnetoresistance in organic spin-valves. Nature, 2004, 427: 821–824

    ADS  Google Scholar 

  9. Shim J H, Raman K V, Park Y J, et al. Large spin diffusion length in an amorphous organic semiconductor. Phys Rev Lett, 2008, 100: 226603

    ADS  Google Scholar 

  10. Yoo J W, Jang H W, Prigodin V N, et al. Giant magnetoresistance in ferromagnet/organic semiconductor/ferromagnet heterojunctions. Phys Rev B, 2009, 80: 205207

    ADS  Google Scholar 

  11. Tokuc H, Oguz K, Burke F, et al. Magnetoresistance in CuPc based organic magnetic tunnel junctions. J Phys Conf Ser, 2011, 303: 012097

    ADS  Google Scholar 

  12. Li K S, Chang Y M, Agilan S, et al. Organic spin valves with inelastic tunneling characteristics. Phys Rev B, 2011, 83: 172404

    ADS  Google Scholar 

  13. Sun D L, Yin L F, Sun C J, et al. Giant magnetoresistance in organic spin valves. Phys Rev Lett, 2010, 104: 236602

    ADS  Google Scholar 

  14. Li B, Kao C Y, Yoo J W, et al. Magnetoresistance in an all-organic-based spin valve. Adv Mater, 2011, 23: 3382–3386

    Google Scholar 

  15. Nguyen T D, Ehrenfreund E, Vardeny Z V. Spin-polarized light-emitting diode based on an organic bipolar spin valve. Science, 2012, 337: 204–209

    ADS  Google Scholar 

  16. Lin R, Wang F, Rybicki J, et al. Distinguishing between tunneling and injection regimes of ferromagnet/organic semiconductor/ferromagnet junctions. Phys Rev B, 2010, 81: 195214

    ADS  Google Scholar 

  17. Zhang X G, Wang Y, Han X F. Theory of nonspecular tunneling through magnetic tunnel junctions. Phys Rev B, 2008, 77: 144431

    ADS  Google Scholar 

  18. Zhang X G, Wang Y, Han X F. Simple models for electron and spin transport in barrier-conductor-barrier devices. Solid-State Electron, 2007, 51: 1344–1350

    ADS  Google Scholar 

  19. Tuti E, Batisti I, Berner D. Injection and strong current channeling in organic disordered media. Phys Rev B, 2004, 70: 161202

    ADS  Google Scholar 

  20. Pasveer W F, Cottaar J, Tanase C, et al. Unified description of charge-carrier mobilities in disordered semiconducting polymers. Phys Rev Lett, 2005, 94: 206601

    ADS  Google Scholar 

  21. Houili H, Tuti E, Batisti I, et al. Investigation of the charge transport through disordered organic molecular heterojunctions. J Appl Phys, 2006, 100: 033702

    ADS  Google Scholar 

  22. Jean J M, Friesner R A, Fleming G R. Application of a multilevel Redfield theory to electron transfer in condensed phases. J Chem Phys, 1992, 96: 5827–5842

    ADS  Google Scholar 

  23. Wang W X, Wang Y P, Zhang X G, et al. Thickness dependence of magnetic and transport properties in organic-CoFe discontinuous multilayers. J Appl Phys, 2010, 107: 09E307

    Google Scholar 

  24. Yu Z G, Smith D L, Saxena A, et al. Molecular geometry fluctuation model for the mobility of conjugated polymers. Phys Rev Lett, 2000, 84: 721–724

    ADS  Google Scholar 

  25. Nelson J. Diffusion-limited recombination in polymer-fullerene blends and its influence on photocurrent collection. Phys Rev B, 2003, 67: 155209

    ADS  Google Scholar 

  26. Shiraishi M, Ikoma T. Molecular spintronics. Physica E, 2011, 43: 1295–1317

    ADS  Google Scholar 

  27. Xie S J, Ahn K H, Smith D L, et al. Ground-state properties of ferromagnetic metal/conjugated polymer interfaces. Phys Rev B, 2003, 67: 125202

    ADS  Google Scholar 

  28. Bobbert P A, Wagemans W, van Oost F W A, et al. Theory for spin diffusion in disordered organic semiconductors. Phys Rev Lett, 2009, 102: 156604

    ADS  Google Scholar 

  29. Dediu V, Hueso L E, Bergenti I, et al. Room-temperature spintronic effect in Alq3-based hybrid devices. Phys Rev B, 2008, 78: 115203

    ADS  Google Scholar 

  30. Braun S, Salaneck W R, Fahlman M. Energy-level alignment at organic/metal and organic/organic interfaces. Adv Mater, 2009, 21: 1450–1472

    Google Scholar 

  31. Ruden P. Organic spintronics interfaces are critical. Nat Mater, 2011, 10: 8–9

    ADS  Google Scholar 

  32. Ishii H, Sugiyama K, Ito E, et al. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv Mater, 1999, 11: 605–625

    Google Scholar 

  33. Frommer J. Scanning tunneling microscopy and atomic force microscopy in organic chemistry. Angew Chem-Int Edit, 1992, 31: 1298–1328

    Google Scholar 

  34. Rosei F, Schunack M, Naitoh Y, et al. Properties of large organic molecules on metal surfaces. Prog Surf Sci, 2003, 71: 95–146

    ADS  Google Scholar 

  35. Hill I G, Rajagopal A, Kahn A. Energy-level alignment at interfaces between metals and the organic semiconductor 4,4′-N,N′-dicarbazolyl-biphenyl. J Appl Phys, 1998, 84: 3236–3241

    ADS  Google Scholar 

  36. Jonsson S K M, Salaneck W R, Fahlman M. Organic fabrication. J Mater Res, 2003, 18: 1219–1226

    ADS  Google Scholar 

  37. Jones R O, Gunnarsson O. The density functional formalism, its applications and prospects. Rev Mod Phys, 1989, 61: 689–746

    ADS  Google Scholar 

  38. Rosei F, Schunack M, Jiang P, et al. Organic molecules acting as templates on metal surfaces. Science, 2002, 296: 328–331

    ADS  Google Scholar 

  39. Altman E I, Colton R J. The interaction of C60 with noble metal surfaces. Surf Sci, 1993, 295: 13–33

    ADS  Google Scholar 

  40. Bardeen J. Tunnelling from a many-particle point of view. Phys Rev Lett, 1961, 6: 57–59

    ADS  Google Scholar 

  41. Tersoff J, Hamann D R. Theory of the scanning tunneling microscope. Phys Rev B, 1985, 31: 805–813

    ADS  Google Scholar 

  42. Parr R G, Yang W. Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989

    Google Scholar 

  43. Sholl D, Steckel J A. Density Functional Theory: A Practical Introduction. Hoboken: John Wiley & Sons Inc., 2009

    Google Scholar 

  44. Soler J M, Artacho E, Gale J D, et al. The SIESTA method for ab initio order-N materials simulation. J Phys-Condes Matter, 2002, 14: 2745–2779

    ADS  Google Scholar 

  45. Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev, 1965, 140: A1133–A11388

    MathSciNet  ADS  Google Scholar 

  46. Lorente N, Rurali R, Tang H. Single-molecule manipulation and chemistry with the STM. J Phys-Condes Matter, 2005, 17: S1049–S1074

    ADS  Google Scholar 

  47. Su G J, Zhang H M, Wan L J, et al. Potential-induced phase transition of trimesic acid adlayer on Au(111). J Phys Chem B, 2004, 108: 1931–1937

    Google Scholar 

  48. Ji T. In Elastic Electron Tunneling Spectroscopy in Molecular Electronic Devices from First-Principles. Dissertation for the Doctoral Degree. Montréal: McGill University, 2010

    Google Scholar 

  49. Ji T, Sun Q, Guo H. Effects of spin-flip scattering in double quantum dots. Phys Rev B, 2006, 74: 233307

    ADS  Google Scholar 

  50. Haney P M. Spintronics in Ferromagnets and Antiferromagnets from First Principles. Dissertation for the Doctoral Degree. Austin: The University of Texas at Austin, 2007

    Google Scholar 

  51. Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B, 2001, 63: 245407

    ADS  Google Scholar 

  52. Davis M E, McCammon J A. Electrostatics in biomolecular structure and dynamics. Chem Rev, 1990, 90: 509–521

    Google Scholar 

  53. Honig B, Nicholls A. Classical electrostatics in biology and chemistry. Science, 1995, 268: 1144–1149

    ADS  Google Scholar 

  54. Holm C, Kékicheff P, Podgornik R. Electrostatic Effects in Soft Matter and Biophysics. Dordrecht: Kluwer Academic Publishers, 2001. 246

    Google Scholar 

  55. Barraud C, Seneor P, Mattana R, et al. Unravelling the role of the interface for spin injection into organic semiconductors. Nat Phys, 2010, 6: 615–620

    Google Scholar 

  56. Chatten A J, Tuladhar S M, Choulis S A, et al. Monte Carlo modelling of hole transport in MDMO-PPV: PCBM blends. J Mater Sci, 2005, 40: 1393–1398

    ADS  Google Scholar 

  57. Zhan Y Q, Holmström E, Lizárraga R, et al. Efficient spin injection through exchange coupling at organic semiconductor/ferromagnet heterojunctions. Adv Mater, 2010, 22: 1626–1630

    Google Scholar 

  58. Wang Y P, Han X F, Wu Y N, et al. Adsorption of tris(8-hydroxyquinoline) aluminum molecules on cobalt surfaces. Phys Rev B, 2012, 85: 144430

    ADS  Google Scholar 

  59. Zhan Y Q, de Jong M P, Li F H, et al. Energy level alignment and chemical interaction at Alq3/Co interfaces for organic spintronic devices. Phys Rev B, 2008, 78: 045208

    ADS  Google Scholar 

  60. Liang S H, Yu T, Liu D P, et al. Characterization of stearic acid adsorption on Ni(111) surface by experimental and first-principles study approach. J Appl Phys, 2011, 109: 07C115

    Google Scholar 

  61. Branda M M, Ferullo R M, Belelli P G, et al. Methanol adsorption on magnesium oxide surface with defects: A DFT study. Surf Sci, 2003, 527: 89–99

    ADS  Google Scholar 

  62. Wang T X, Wei H X, Zeng Z M, et al. Magnetic/nonmagnetic/magnetic tunnel junction based on hybrid organic Langmuir-Blodgett-films, Appl Phys Lett, 2006, 88: 242505

    ADS  Google Scholar 

  63. Tang C W. Two-layer organic photovoltaic cell. Appl Phys Lett, 1986, 48: 183–185

    ADS  Google Scholar 

  64. Schmidt G, Molenkamp L W. Spin injection into semiconductors, physics and experiments. Semicond Sci Technol, 2002, 17: 310–321

    ADS  Google Scholar 

  65. Yoo J W, Chen C Y, Jang H W, et al. Spin injection/detection using an organic-based magnetic semiconductor. Nat Mater, 2010, 9: 638–642

    ADS  Google Scholar 

  66. Li B, Kao C Y, Lu Y, et al. Room-temperature organic-based spin polarizer. Appl Phys Lett, 2011, 99: 153503

    ADS  Google Scholar 

  67. Shiohara A, Hanada S, Prabakar S, et al. Chemical reactions on surface molecules attached to silicon quantum dots. J Am Chem Soc, 2010, 132: 248–253

    Google Scholar 

  68. Bent S F. Organic functionalization of group IV semiconductor surfaces: Principles, examples, applications, and prospects. Surf Sci, 2002, 500: 879–903

    ADS  Google Scholar 

  69. Rocha A R, García-Suárez V M, Bailey S W, et al. Towards molecular spintronics. Nat Mater, 2005, 4: 335–339

    ADS  Google Scholar 

  70. Petta J R, Slater S K, Ralph D C. Spin-dependent transport in molecular tunnel junctions. Phys Rev Lett, 2004, 93: 136601

    ADS  Google Scholar 

  71. Ning Z Y, Zhu Y, Wang J, et al. Quantitative analysis of nonequilibrium spin injection into molecular tunnel junctions. Phys Rev Lett, 2008, 100: 056803

    ADS  Google Scholar 

  72. Liu D P, Hu Y B, Guo H, et al. Magnetic proximity effect at the molecular scale: First-principles calculations. Phys Rev B, 2008, 78: 193307

    ADS  Google Scholar 

  73. Shim J H, Raman K V, Park Y J, et al. Large spin diffusion length in an amorphous organic semiconductor. Phys Rev Lett, 2008, 100: 226603

    ADS  Google Scholar 

  74. Raman K V, Watson S M, Shim J H, et al. Effect of molecular ordering on spin and charge injection in rubrene. Phys Rev B, 2009, 80: 195212

    ADS  Google Scholar 

  75. Li K S, Chang Y M, Agilan S, et al. Organic spin valves with inelastic tunneling characteristics. Phys Rev B, 2011, 83: 172404

    ADS  Google Scholar 

  76. Simmons J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J Appl Phys, 1963, 34: 1793–1803

    ADS  Google Scholar 

  77. Mandal S, Pati R. What determines the sign reversal of magnetoresistance in a molecular tunnel junction? ACS Nano, 2012, 6: 3580–3588

    Google Scholar 

  78. Majumdar S, Majumdar H S, Laiho R, et al. Comparing small molecules and polymer for future organic spin-valves. J Alloy Compd, 2006, 423: 169–171

    Google Scholar 

  79. Li F H, Graziosi P, Tang Q, et al. Electronic structure and molecular orientation of pentacene thin films on ferromagnetic La0.7Sr0.3MnO3. Phys Rev B, 2010, 81: 205415

    ADS  Google Scholar 

  80. Yamauchi Y, Kurahashi M, Suzuki T. Spin-polarized metastable deexcitation spectroscopy study of potassium and oxygen adsorbed iron surfaces. Jpn J Appl Phys, 2002, 41: 4675–4678

    ADS  Google Scholar 

  81. Scheybala A, Ramsvika T, Bertschingera R, et al. Induced magnetic ordering in a molecular monolayer. Chem Phys Lett, 2005, 411: 214–220

    ADS  Google Scholar 

  82. Wende H, Bernien M, Luo J, et al. Substrate-induced magnetic ordering and switching of iron. Nat Mater, 2007, 6: 516–520

    ADS  Google Scholar 

  83. Iacovita C, Rastei M V, Heinrich B W, et al. Visualizing the spin of individual cobalt-phthalocyanine molecules. Phys Rev Lett, 2008, 101: 116602

    ADS  Google Scholar 

  84. Bernien M, Miguel J, Weis C, et al. Tailoring the nature of magnetic coupling of Fe-porphyrin molecules to ferromagnetic substrates. Phys Rev Lett, 2009, 102: 047202

    ADS  Google Scholar 

  85. Javaid S, Bowen M, Boukari S, et al. Impact on interface spin polarization of molecular bonding to metallic surfaces. Phys Rev Lett, 2010, 105: 077201

    ADS  Google Scholar 

  86. Wäckerlin C, Chylarecka D, Kleibert A, et al. Controlling spins in adsorbed molecules by a chemical switch. Nat Commun, 2010, 1: 61

    Google Scholar 

  87. Brede J, Atodiresei N, Kuck S, et al. Spin- and energy-dependent tunneling through a single molecule with intramolecular spatial resolution. Phys Rev Lett, 2010, 105: 047204

    ADS  Google Scholar 

  88. Lodi Rizzini A, Krull C, Balashov T, et al. Coupling single molecule magnets to ferromagnetic substrates. Phys Rev Lett, 2011, 107: 177205

    ADS  Google Scholar 

  89. Chen J, Reed M A, Rawlett A M, et al. Large on-off ratios and negative differential resistance in a molecular electronic device. Science, 1999, 286: 1550–1552

    Google Scholar 

  90. Blum A S, Kushmerick J G, Long D P, et al. Molecularly inherent voltage-controlled conductance switching. Nat Mater, 2005, 4: 167–172

    ADS  Google Scholar 

  91. Service R F. Molecules get wired. Science, 2001, 294: 2442–2443

    Google Scholar 

  92. Rawlett A, Hopson T J, Nagahara L A, et al. Electrical measurements of a dithiolated electronic molecule via conducting atomic force microscopy. Appl Phys Lett, 2002, 81: 3043–3045

    ADS  Google Scholar 

  93. Park H, Park J, Lim A K L, et al. Nanomechanical oscillations in a single-C60 transistor. Nature, 2000, 407: 57–60

    ADS  Google Scholar 

  94. Li C, Zhang D H, Liu X L, et al. Fabrication approach for molecular memory arrays. Appl Phys Lett, 2003, 82: 645–647

    ADS  Google Scholar 

  95. Huang Y H, Rettner C T, Auerbach D J, et al. Vibrational promotion of electron transfer. Science, 2000, 290: 111–114

    ADS  Google Scholar 

  96. Schmaus S, Bagrets A, Nahas Y, et al. Giant magnetoresistance through a single molecule. Nat Nanotechnol, 2011, 6: 185–189

    ADS  Google Scholar 

  97. Gobbi M, Bedoya-Pinto A, Golmar F, et al. C60-based hot-electron magnetic tunnel transistor. Appl Phys Lett, 2012, 101: 102404

    ADS  Google Scholar 

  98. Liu D. The First-Principle Calculation of Spin-Dependent Transport in Magnetic Tunnel Junction. Dissertation for the Doctoral Degree. Beijing: Institute of Physics, Chinese Academy of Sciences, 2009

    Google Scholar 

  99. Han X F, Wen Z C, Wang Y, et al. Nano-scale patterned magnetic tunnel junction and its device applications, AAPPS Bull, 2008, 18: 24–32

    Google Scholar 

  100. Tehrani S, Engel B, Slaughter J M, et al. Recent developments in magnetic tunnel junction MRAM. IEEE Trans Magn, 2000, 36: 2752–2757

    ADS  Google Scholar 

  101. Han X F, Peng Z L, Wang W, et al. MRAM based on vertical current writing and its control method. US Patent, 7480171

  102. Han X F, Wen Z C, Wang Y, et al. Nanoelliptic ring-shaped magnetic tunnel junction and its application in MRAM design with spin-polarized current switching. IEEE Trans Magn, 2011, 47: 2957–2961

    ADS  Google Scholar 

  103. Han X F, Wen Z C, Wei H X. Nanoring magnetic tunnel junction and its application in magnetic random access memory demo devices with spin-polarized current switching. J Appl Phys, 2008, 103: 07E933

    Google Scholar 

  104. He J X, Wen Z C, Han X F, et al. Effects of current on nanoscale ring-shaped magnetic tunnel junctions. Phys Rev B, 2008, 77: 134432

    ADS  Google Scholar 

  105. Wen Z C, Wang Y, Yu G Q, et al. Patterned nanoscale magnetic tunnel junctions with different geometrical structures, Spin, 2011, 1: 109–114

    Google Scholar 

  106. Rizwan S, Zhang S, Zhao Y G, et al. Exchange-bias like hysteretic magnetoelectric-coupling of as-grown synthetic antiferromagnetic structures. Appl Phys Lett, 2012, 101: 082414

    ADS  Google Scholar 

  107. Rizwan S, Zhang S, Yu T, et al. Reversible and reproducible giant universal electroresistance effect. Chin Phys Lett, 2011, 28: 107308

    ADS  Google Scholar 

  108. Liu H F, X F Han, Zhang S, et al. Electric-field control of giant magnetoresistance in spin-valves, Spin, 2012, 2: 1250006

    Google Scholar 

  109. Salis G, Alvarado S F, Tschudy M, et al. Hysteretic electrolu-minescence in organic light-emitting diodes for spin injection. Phys Rev B, 2004, 70: 085203

    ADS  Google Scholar 

  110. Davis A H, Bussmann K. Organic luminescent devices and magnetoelectronics. J Appl Phys, 2003, 93: 7358–7360

    ADS  Google Scholar 

  111. Nguyen T D, Hukic-Markosian G, Wang F, et al. Isotope effect in magneto-transport of π-conjugated films and devices. Nat Mater, 2010, 9: 345–352

    ADS  Google Scholar 

  112. Salis G, Alvarado S F, Tschudy M, et al. Hysteretic electroluminescence in organic light-emitting diodes for spin injection. Phys Rev B, 2004, 70: 085203

    ADS  Google Scholar 

  113. Wang B, Wang J, Guo H. Quantum spin field effect transistor. Phys Rev B, 2003, 67: 092408

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiuFeng Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Han, X. Organic-ferromagnetic hetero-structures with spin transport properties and fundamental physical effects. Sci. China Phys. Mech. Astron. 56, 151–165 (2013). https://doi.org/10.1007/s11433-012-4974-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4974-4

Keywords

Navigation