Skip to main content
Log in

Preparation and ξ-potential characterization of highly dispersible phosphate — functionalized magnetite nanoparticles

  • Research Paper
  • Special Topic: Nanomaterials
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

By the combination of high-temperature organometallic synthesis and phase transfer through complete ligand-exchange with mixed phosphate, highly water-dispersible Fe3O4 nanoparticles with narrow size distribution are obtained, which show applicable response to magnetic field. IR and ξ-potential characterization of this system provides insights into ligand structures on particle surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu A H, Salabas E L, Schuth F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew Chem Int Fd, 2007, 46: 1222–1244

    Article  Google Scholar 

  2. Gao J H, Gu H W, Xu B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res, 2009, 42(8): 1097–1107

    Article  Google Scholar 

  3. Qiao R R, Yang C H, Gao M Y. Superparamagnetic iron oxide nanoparticles: From preparations to in vivo MRI applications. J Mater Chem, 2009, 19: 6274–6293

    Article  Google Scholar 

  4. Tobias N, Bernhard S, Heinrich H, et al. Superparamagnetic nanoparticles for biomedical application: Possibilities and limitations of a new drug delivery system. J Magn Magn Mater, 2005, 293: 483–496

    Article  Google Scholar 

  5. Chang Y, Bai Y P, Teng B, et al. A new drug carrier: Magnetite nanoparticles coated with amphiphilic block copolymer. Sci China Phys Mech Astron, 2009, 54(7): 1190–1196

    ADS  Google Scholar 

  6. Young-wook J, Yong-Min Huh, Jin-sil Chol, et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc, 2005, 127: 5732–5733

    Article  Google Scholar 

  7. Cafer T Y, Mayo J T, William W Y, et al. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science, 2006, 314: 964–967

    Article  Google Scholar 

  8. Jordan A, Scholz R, Wust P, et al. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater, 1999, 201: 413

    Article  ADS  Google Scholar 

  9. Sun S H, Zeng H, David B R, et al. Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles. J Am Chem Soc, 2004, 126: 273–279

    Article  Google Scholar 

  10. Xu Z H, Shen C M, Hou Y L, et al. Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem Mater, 2009, 21: 1778–1780

    Article  Google Scholar 

  11. Li Z, Chen H, Bao H B, et al. One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem Mater, 2004, 16(8): 1391–1393

    Article  Google Scholar 

  12. Park J, An K, Hwang Y, et al. Ultra-lager-scale syntheses of monodisperse nanocrystals. Nat Mater, 2004, 3: 891–895

    Article  ADS  Google Scholar 

  13. Taeghwan H, Su S L, Jongnam P, et al. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc, 2001, 123: 12798–12801

    Article  Google Scholar 

  14. Kang Y S, Risbud S, Rabolt J F, et al. Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3. Chem Mater, 1996, 8: 2209–2211

    Article  Google Scholar 

  15. Wan J Q, Cai W, Meng X X, et al. Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chem Commun, 2007: 5004–5006

  16. Jia X, Chen D R, Jiao X L, et al. Environmentally-friendly preparation of water-dispersible magnetic nanoparticles. Chem Commun, 2009: 968–970

  17. Maity D, Chandrasekharan P, Feng S S, et al. Polyol-based synthesis of hydrophilic magnetite nanoparticles. J Appl Phys, 2010, 107: 09B310

    Article  Google Scholar 

  18. Adireddy S, Lin C K, Palshin V, et al. Size-controlled synthesis of quasi-monodisperse transition-metal Ferrite nanocrystals in fatty alcohol Solutions. J Phys Chem C, 2009, 113(49): 20800–20811

    Article  Google Scholar 

  19. Ge J P, Hu Y X, Biasini M, et al. Superparamagnetic magnetite colloidal nanocrystal clusters. Angew Chem Int Ed, 2007, 46: 4342–4345

    Article  Google Scholar 

  20. Xuan S H, Wang Y X J, Yu J C, et al. Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles. Chem Mater, 2009, 21(21): 5079–5087

    Article  Google Scholar 

  21. Wen Y H, Cheng C M, Gu H C. Synthesis of superparamagnetic carboxyl functional magnetite microspheres through polyol process (in Chinese). J Funct Mater, 2009, 6(40): 926–929

    Google Scholar 

  22. Zhou S X, Georg G, Markus N, et al. Dispersion behavior of zirconia nanocrystals and their surface functionalization with vinyl group-containing ligands. Langmuir, 2007, 23: 9178–9187

    Article  Google Scholar 

  23. Pinna N, Grancharov S, Beato P, et al. Magnetic nanocrystals: Nonaqueous synthesis, characterization, and solubility. Chem Mater, 2005, 17: 3044–3049

    Article  Google Scholar 

  24. Liu B J, Li X Y, Chen W, et al. Surface ligand exchange and phase transfer of iron oxide magnetic nanoparticles (in Chinese). Acta Phys-Chim Sin, 2010, 26: 784–788

    Google Scholar 

  25. Liu X C, Dang Y Q, Wu Y Q. A convenient method to synthesize surface amino-coated magnetic superparamagnetic Fe3O4 nanoparticles (in Chinese). Acta Phys-Chim Sin, 2010, 26(3): 784–788

    Google Scholar 

  26. Taniguchi T, Nakagawa K, Watanabe T, et al. Hydrothermal growth of fatty stabilized iron oxide nanocrystals. J Phys Chem C, 2009, 113: 838–843

    Google Scholar 

  27. Daou T J, Begin-Colin S, Grenèche J M, et al. Phosphate adsorption properties of magnetite-based nanoparticles. Chem Mater, 2007, 19: 4494–4505

    Article  Google Scholar 

  28. Hajdu A, Tombacz E, Illes E, et al. Magnetite nanoparticles stabilized under physiological conditions for biomedical applications. Prog Colloid Polym Sci, 2008, 135: 29–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuangLu Ge.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Tang, Y. & Ge, G. Preparation and ξ-potential characterization of highly dispersible phosphate — functionalized magnetite nanoparticles. Sci. China Phys. Mech. Astron. 54, 1766 (2011). https://doi.org/10.1007/s11433-011-4481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-011-4481-z

Keywords

Navigation