Skip to main content
Log in

Theoretical study of the charge carrier mobilities of the molecular materials tetrathiafulvalene (TTF) and 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene (BDH-TTP)

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Tetrathiafulvalene (TTF) is a kind of fused ring aromatic compound containing four sulfur atoms in one molecule, which is well known as a charge transport material. In order to calculate the charge mobility of this semiconductor, Marcus electron transfer theory and the embedded model, which can give small intramolecular reorganization energies, were employed. The calculated results were in good agreement with the experimental values, so the above computing model is appropriate to assess the electrical property of TTF. On this basis, we predicted the charge mobility of 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene (BDH-TTP) crystals, for which the molecular structure is similar to TTF. The calculated results indicated that BDH-TTP is a p-type material, which has a better performance than TTF in hole transfer due to larger hole coupling and the smaller hole injection barrier. In addition, the direct coupling (DC) and the site energy correction (SEC) methods were used to calculate the charge transfer integrals. Although the results were slightly different, the qualitative trends were the same. Furthermore we took into account the anisotropic transfer properties of TTF and BDH-TTF, since obviously the mobilities along one dimension are larger than those along three dimensions. Finally, natural bond orbital analysis was used to study the interactions in all of the dimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murphy AR, Frechet JMJ. Organic semiconducting oligomers for use in thin film transistors. Chem Rev, 2007, 107: 1066–1096

    Article  CAS  Google Scholar 

  2. Bredas JL, Beljonne D, Coropceanu V, Cornil J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: A molecular picture. Chem Rev, 2004, 104: 4971–5003

    Article  CAS  Google Scholar 

  3. Coropceanu V, Cornil J, da Silva DA, Olivier Y, Silbey R, Bredas J. Charge transport in organic semiconductors. Chem Rev, 2007, 107: 926–952

    Article  CAS  Google Scholar 

  4. Leufgen M, Rost O, Gould C, Schmidt G, Geurts J, Molenkamp LW, Oxtoby NS, Mas-Torrent M, Crivillers N, Veciana J, Rovira C. High-mobility tetrathiafulvalene organic field-effect transistors from solution processing. Org Electron, 2008, 9: 1101–1106

    Article  CAS  Google Scholar 

  5. Rosokha SV, Kochi JK. Molecular and electronic structures of the long-bonded π-dimers of tetrathiafulvalene cation-radical in intermolecular electron transfer and in (solid-state) conductivity. J Am Chem Soc, 2007, 129: 828–838

    Article  CAS  Google Scholar 

  6. Rovira C. Bis(ethylenethio)tetrathiafulvalene (BET-TTF) and related dissymmetrical electron donors: From the molecule to functional molecular materials and devices (OFETs). Chem Rev, 2004, 104: 5289–5317

    Article  CAS  Google Scholar 

  7. Nielsen MB, Lomholt C, Becher J. Tetrathiafulvalenes as building blocks in supramolecular chemistry II. Chem Soc Rev, 2000, 29: 153–164

    Article  CAS  Google Scholar 

  8. Fourmigué M, Batail P. Activation of hydrogen- and halogen-bonding interactions in tetrathiafulvalene-based crystalline molecular conductors. Chem Rev, 2004, 104: 5379–5418

    Article  Google Scholar 

  9. Mas-Torrent M, Masirek S, Hadley P, Crivillers N, Oxtoby NS, Reuter P, Veciana J, Rovira C, Tracz A. Organic field-effect transistors (OFETs) of highly oriented films of dithiophene-tetrathiafulvalene prepared by zone casting. Org Electron, 2008, 9: 143–148

    Article  CAS  Google Scholar 

  10. Mas-Torrent M, Hadley P, Crivillers N, Veciana J, Rovira C. Large photoresponsivity in high-mobility single-crystal organic field-effect phototransistors. ChemPhysChem, 2006, 7: 86–88

    Article  CAS  Google Scholar 

  11. Mas-Torrent M, Rovira C. Tetrathiafulvalene derivatives for organic field effect transistors. J Mater Chem, 2006, 16: 433–436

    Article  CAS  Google Scholar 

  12. Miskiewicz P, Mas-Torrent M, Jung J, Kotarba S, Glowacki I, Gomar-Nadal E, Amabilino DB, Veciana J, Krause B, Carbone D, Rovira C, Ulanski J. Efficient high area OFETs by solution based processing of a π-electron rich donor. Chem Mater, 2006, 18: 4724–4729

    Article  CAS  Google Scholar 

  13. Ribas X, Mas-Torrent M, Perez-Benitez A, Dias JC, Alves H, Lopes EB, Henriques RT, Molins E, Santos IC, Wurst K, Foury-Leylekian P, Almeida M, Veciana J, Rovira C. Organic spin ladders from tetrathiafulvalene (TTF) derivatives. Adv Funct Mater, 2005, 15: 1023–1035

    Article  CAS  Google Scholar 

  14. Valeev EF, Coropceanu V, Silva DA, Salman S, Brdas JL. Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors. J Am Chem Soc, 2006, 128: 9882–9886

    Article  CAS  Google Scholar 

  15. Naraso, Nishida JI, Ando S, Yamaguchi J, Itaka K, Koinuma H, Tada H, Tokito S, Yamashita Y. High-performance organic field-effect transistors based on pi-extended tetrathiafulvalene derivatives. J Am Chem Soc, 2005, 127: 10142–10143

    Article  CAS  Google Scholar 

  16. Mas-Torrent M, Hadley P, Bromley S, Crivillers N, Veciana J Rovira C. Single-crystal organic field-effect transistors based on dibenzo-tetrathiafulvalene. Appl Phys Lett, 2005, 86: 012110

    Article  Google Scholar 

  17. Mas-Torrent M, Hadley P, Bromley ST, Ribas X, Tarres J, Mas M, Molins E, Veciana J, Rovira C. Correlation between crystal structure and mobility in organic field-effect transistors based on single crystals of tetrathiafulvalene derivatives. J Am Chem Soc, 2004, 126: 8546–8553

    Article  CAS  Google Scholar 

  18. Mas-Torrent M, Durkut M, Hadley P, Ribas X, Rovira C. High mobility of dithiophene-tetrathiafulvalene single-crystal organic field effect transistors. J Am Chem Soc, 2004, 126: 984–985

    Article  CAS  Google Scholar 

  19. Jiang H, Yang XJ, Cui ZD, Liu YC, Li HX, Hu WP, Liu YQ, Zhu DB. Phase dependence of single crystalline transistors of tetrathiafulvalene. Appl Phys Lett, 2007, 91: 123505

    Article  Google Scholar 

  20. Yamada J, Watanabe M, Anzai H, Nishikawa H, Ikemoto I, Kikuchi K. BDH-TTP as a structural isomer of BEDT-TTF and its two-dimensional hexafluorophosphate salt. Angew Chem Int Edit, 1999, 38: 810–813

    Article  CAS  Google Scholar 

  21. Marcus RA. Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem, 1964, 15: 155–196

    Article  CAS  Google Scholar 

  22. Marcus RA. Electron-transfer reactions in chemistry-Theory and experiment. Rev Mod Phys, 1993, 65: 599–610

    Article  CAS  Google Scholar 

  23. Beljonne D, Ye AJ, Shuai ZG, Bredas JL. Chain-length dependence of singlet and triplet exciton formation rates in organic light-emitting diodes. Adv Funct Mater, 2004, 14: 684–692

    Article  CAS  Google Scholar 

  24. Lemaur V, Silva Filho DA, Coropceanu V, Lehmann M, Geerts Y, Piris J, Debije MG, van de Craats AM, Senthilkumar K, Siebbeles LDA, Warman JM, Bredas JL, Cornil J. Charge transport properties in discotic liquid crystals: A quantum-chemical insight into structure-property relationships. J Am Chem Soc, 2004, 126: 3271–3279

    Article  CAS  Google Scholar 

  25. Zhang WW, Liang WZ, Zhao Y. Non-condon effect on charge transport in dithiophene-tetrathiafulvalene crystal. J Chem Phys, 2010, 133: 024501

    Article  Google Scholar 

  26. Nelsen S, Blackstock S, Kim Y. Estimation of inner shell Marcus terms for amino nitrogen compounds by molecular orbital calculations. J Am Chem Soc, 1987, 109: 677–682

    Article  CAS  Google Scholar 

  27. Yin SW, Yi YP, Li QX, Yu G, Liu YQ, Shuai ZG. Balanced carrier transports of electrons and holes in silole-based compounds-A theoretical study. J Phys Chem A, 2006, 110: 7138–7143

    Article  CAS  Google Scholar 

  28. Yamada J, Akutsu H, Nishikawa H, Kikuchi K. New trends in the synthesis of ?-electron donors for molecular conductors and superconductors. Chem Rev, 2004, 104: 5057–5083

    Article  CAS  Google Scholar 

  29. Troisi A, Orlandi G. The hole transfer in DNA: Calculation of electron coupling between close bases. Chem Phys Lett, 2001, 344: 509–518

    Article  CAS  Google Scholar 

  30. Yang FY, Chang KJ, Hsu MY, Liu CC. High-performance poly(3-hexylthiophene) transistors with thermally cured and photo-cured PVP gate dielectrics. J Mater Chem, 2008, 18: 5927–5932

    Article  CAS  Google Scholar 

  31. Huang JS, Kertesz M. Intermolecular transfer integrals for organic molecular materials: Can basis set convergence be achieved? Chem Phys Lett, 2004, 390: 110–115

    Article  CAS  Google Scholar 

  32. Senthilkumar K, Grozema F, Guerra C, Bickelhaupt F, Lewis F, Berlin Y, Ratner M, Siebbeles L. Charge transport properties in discotic liquid crystals: A quantum-chemical insight into structure-property relationships. J Am Chem Soc, 2005, 127: 14894–14903

    Article  CAS  Google Scholar 

  33. Deng WQ, Goddard WA. Predictions of hole mobilities in oligoacene organic semiconductors from quantum mechanical calculations. J Phys Chem B, 2004, 108: 8614–8621

    Article  CAS  Google Scholar 

  34. Zhang YX, Cai X, Bian YZ, Li XY, Jiang JZ. Heteroatom substitution of oligothienoacenes: From good p-type semiconductors to good ambipolar semiconductors for organic field-effect transistors. J Phys Chem C, 2008, 112: 5148–5159

    Article  CAS  Google Scholar 

  35. Schein LB, McGhie AR. Band-hopping mobility transition in naphthalene and deuterated naphthalene. Phys Rev B, 1979, 20: 1631–1639

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03. Pittsburgh: Gaussian Inc., 2003

    Google Scholar 

  37. Lee C, Yang W, Parr RG. Development of the Colle-Salveti correlation-energy formula into a function of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  CAS  Google Scholar 

  38. Ditchfield R, Hehre WJ, Pople JA. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys, 1971, 54: 724–728

    Article  CAS  Google Scholar 

  39. Ellern A, Bernstein J, Becker J, Zamir S, Shahal L, Cohen S. A new polymorphic modification of tetrathiafulvalene. Crystal structure, lattice energy and intermolecular interactions. Chem Mater, 1994, 6: 1378–1385

    Article  CAS  Google Scholar 

  40. Wang LJ, Nan GJ, Yang XD, Peng Q, Li QK, Shuai ZG. Computational methods for design of organic materials with high charge mobility. Chem Soc Rev, 2010, 39: 423–434

    Article  CAS  Google Scholar 

  41. Hutchison GR, Ratner MA, Marks TJ. Hopping transport in conductive heterocyclic oligomers: Reorganization energies and substituent effects. J Am Chem Soc, 2005, 127: 2339–2350

    Article  CAS  Google Scholar 

  42. Li HX, Zheng RH, Shi Q. Theoretical study on charge carrier mobilities of tetrathiafulvalene derivatives. Phys Chem Chem Phys, 2011, 13: 5642–5650

    Article  CAS  Google Scholar 

  43. Bromley S, Mas-Torrent M, Hadley P, Rovira C. Importance of intermolecular interactions in assessing hopping mobilities in organic field effect transistors: Pentacene versus dithiophene-tetrathiafulvalene. J Am Chem Soc, 2004, 126: 6544–6545

    Article  CAS  Google Scholar 

  44. Sundar VC, Zaumseil J, Podzorov V, Menard E, Willett R L, Someya T, Gershenson ME, Rogers JA. Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals. Science, 2004, 303: 1644–1646

    Article  CAS  Google Scholar 

  45. Lee J, Roth S, Park Y. Anisotropic field effect mobility in single crystal pentacene. Appl Phys Lett, 2007, 91: 1252106

    Google Scholar 

  46. Wen S, Li A, Song J, Deng W, Han K, Goddard W. First-principles investigation of anistropic hole mobilities in organic semiconductors. J Phys Chem B, 2009, 113: 8813–8819

    Article  CAS  Google Scholar 

  47. Weinhold F, Landis CR. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective. New York: Cambridge University Press, 2005

    Book  Google Scholar 

  48. Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev, 1988, 88: 899–926

    Article  CAS  Google Scholar 

  49. Nan GJ, Yang XD, Wang LJ, Shuai ZG, Zhao Y. Nuclear tunneling effects of charge transport in rubrene, tetracene, and pentacene. Phys Rev B, 2009, 79: 115203

    Article  Google Scholar 

  50. Yin SW, LV YF. Modeling hole and electron mobilities in pentacene ab-plane. OrgElectron, 2008, 9: 852–858

    CAS  Google Scholar 

  51. Stehr V, Pfister J, Fink RF, Engels B, Deibel C. First-principles calculations of anisotropic charge-carrier mobilities in organic semiconductor crystals. Phys Rev B, 2011, 83: 155208

    Article  Google Scholar 

  52. Wu Q, Voorhis TV. Constrained density functional theory and its application in long-rangeelectron transfer. J Chem Theory Comput, 2006, 2: 765–774

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuiXue Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Wang, X., Li, Z. et al. Theoretical study of the charge carrier mobilities of the molecular materials tetrathiafulvalene (TTF) and 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene (BDH-TTP). Sci. China Chem. 55, 2176–2185 (2012). https://doi.org/10.1007/s11426-012-4738-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4738-z

Keywords

Navigation