Skip to main content
Log in

Effect of slow monomer addition on molecular parameters of hyperbranched polymers synthesized in the presence of multifunctional core molecules

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This study develops the kinetics for the slow monomer addition technique in the synthesis of hyperbranched polymers. Taking the conversion of monomer (x) as a variable, we derived the analytic expressions of molecular size distribution function, average degree of polymerization, polydispersity index and degree of branching. These expressions are not only amenable to the polymerization with high monomer conversion, but also appropriate to describe the whole polymerization process. Comparison with the one-pot polymerization indicates that the slow monomer addition technique improves the molecular weight distribution and increases the degree of branching for the products obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. Dendritic macromolecules: Synthesis of starburst dendrimers. Macromolecules, 1986, 19(9): 2466–2468

    Article  CAS  Google Scholar 

  2. Trollsas M, Hedrick JL. Dendrimer-like star polymers. J Am Chem Soc, 1998, 120(19): 4644–4651

    Article  Google Scholar 

  3. Newkome GR, Yao Z, Baker GR, Gupta VK, Russo PS, Saunders MJ. Cascade molecules: Synthesis and characterization of a benzene[9]3-arborol. J Am Chem Soc, 1986, 108(4): 849–850

    Article  CAS  Google Scholar 

  4. Kim YH, Webster OW. Hyperbranched polyphenylenes. Polym Prepr 1988, 29, 310–311

    CAS  Google Scholar 

  5. Kim YH, Webster OW. Water soluble hyperbranched polyphenylene: “A unimolecular micelle?” J Am Chem Soc, 1990, 112(11): 4592–4593

    Article  CAS  Google Scholar 

  6. Kim YH. Hyperbranched polymers 10 years after. J Polym Sci Part A: Polym Chem, 1998, 36(11): 1685–1698

    Article  CAS  Google Scholar 

  7. Flory PJ. Molecular size distribution in three dimensional polymers. VI. Branched polymers. J Am Chem Soc, 1952, 74: 2718–2723

    Article  CAS  Google Scholar 

  8. Fréchet JMJ, Henmi M, Gitsov I, Aoshima S, Leduc M, Grubbs RB. Self-condensing vinyl polymerization-An approach to dendritic materials. Science, 1995, 269: 1080–1083

    Article  Google Scholar 

  9. Müller AHE, Yan DY, Wulkow M. Molecular weight distribution of hyperbranched polymers made by self-condensing vinyl polymerization. 1. Molecular weight distribution. Macromolecules, 1997, 30(23): 7015–7023

    Article  Google Scholar 

  10. Yan D, Müller AHE, Matyjaszewski K. Molecular weight distribution of hyperbranched polymers made by self-condensing vinyl polymerization. 2. Degree of branching. Macromolecules, 1997, 30(23): 7024–7033

    Article  CAS  Google Scholar 

  11. Yan DY, Zhou ZP. Molecular weight distribution of hyperbranched polymers generated from polycondensation of AB2 type monomers in the presence of multifunctional core moieties. Macromolecules, 1999, 32(3): 819–824

    Article  CAS  Google Scholar 

  12. Yan DY, Zhou ZP, Müller AHE. Molecular weight distribution of hyperbranched polymers generated by self-condensing vinyl polymerization in presence of a multifunctional initiator. Macromolecules, 1999, 32(2): 245–250

    Article  CAS  Google Scholar 

  13. Zhou ZP, Yan DY. Kinetic analysis of the polycondensation of ABg type monomer with a multifunctional core. Polymer, 2000, 4: 4549–4558

    Article  Google Scholar 

  14. Yan DY, Zhou ZP, Jiang H, Wang G. Kinetic model of star-branched polycondensation. Macromol Theory Simul, 1998, 7: 13–18

    Article  CAS  Google Scholar 

  15. Radke W, Litvinenko G, Müller AHE. Effect of core-forming molecules on molecular weight distribution and degree of branching in the synthesis of hyperbranched polymers. Macromolecules, 1998, 31(2): 239–248

    Article  CAS  Google Scholar 

  16. Parker D, Feast WJ. Synthesis, structure, and properties of core-terminated hyperbranched polyesters based on dimethyl 5-(2-hydroxyethoxy)isophthalate. Macromolecules, 2001, 34(17): 5792–5798

    Article  CAS  Google Scholar 

  17. He X, Liang H, Pan C. Self-condensing vinyl polymerization in the presence of multifunctional initiator with unequal rate constants: Monte Carlo simulation. Polymer, 2003, 44(21): 6697–6706

    Article  CAS  Google Scholar 

  18. Bharathi P, Moore JS. Controlled synthesis of hyperbranched polymers by slow monomer addition to a core. Macromolecules, 2000, 33(9): 3212–3218

    Article  CAS  Google Scholar 

  19. Hanselmann R, Holter D, Frey H. Hyperbranched polymers prepared via the core-dilution/slow addition technique: Computer simulation of molecular weight distribution and degree of branching. Macromolecules, 1998, 31(12): 3790–3801

    Article  CAS  Google Scholar 

  20. Litvinenko G, Müller AHE. Molecular weight averages and degree of branching in self-condensing vinyl copolymerization in the presence of multifunctional initiators. Macromolecules, 2002, 35(12): 4577–4583

    Article  CAS  Google Scholar 

  21. Sunder A, Hanselmann R, Frey H, Mulhaupt R. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules, 1999, 32(13): 4240–4246

    Article  CAS  Google Scholar 

  22. Gong C, Miravet J, Frechet JMJ. Intramolecular cyclization in the polymerization of ABx monomers: Approaches to the control of molecular weight and polydispersity in hyperbranched poly(siloxysilane). J Polym Sci Part A: Polym Chem, 1999, 37(16): 3193–3201

    Article  CAS  Google Scholar 

  23. Zhou ZP, Yan DY. A general model for the kinetics of self-condensing vinyl polymerization. Macromolecules, 2008, 41(12): 4429–4434

    Article  CAS  Google Scholar 

  24. Zhou ZP, Wang G, Yan DY. Kinetic analysis of self-condensing vinyl polymerization with unequal reactivities. Chin Sci Bull, 2008, 53(22): 3516–3521

    Article  CAS  Google Scholar 

  25. Zhou ZP, Yan DY. Effect of multifunctional initiator on self-condensing vinyl polymerization with nonequal molar ratio of stimulus to monomer. Macromolecules, 2009, 42(12): 4047–4052

    Article  CAS  Google Scholar 

  26. Holter D, Frey H. Degree of branching in hyperbranched polymers. 2. Enhancement of the DB: Scope and limitations. Acta Polym, 1997, 48(8): 298–309

    CAS  Google Scholar 

  27. Suzuki M, Ii A, Saegusa T. Multibranching polymerization: Palladium-catalyzed ring-opening polymerization of cyclic carbamate to produce hyperbranched dendritic polyamine. Macromolecules, 1992, 25(25): 7071–7072

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiPing Zhou.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 20774038 & 50633010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Z., Jia, Z. & Yan, D. Effect of slow monomer addition on molecular parameters of hyperbranched polymers synthesized in the presence of multifunctional core molecules. Sci. China Chem. 53, 891–897 (2010). https://doi.org/10.1007/s11426-010-0121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-010-0121-0

Keywords

Navigation