Skip to main content
Log in

A mechanistic study of CO removal on a small H-saturated platinum cluster

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

CO poisoning to platinum catalysts has long been recognized as one of the major technical obstacles in heterogeneous catalysis and its successful removal represents a significant challenge to a wide variety of applications. Using density functional theory (DFT), we performed systematic theoretical calculations to explore the CO removal mechanisms, in the presence of hydrogen, via oxidation by oxygen to form CO2 or reduction by hydrogen to form formaldehyde using a subnano Pt cluster as a model for catalyst nanoparticles. We show that CO oxidation is both thermochemically and kinetically difficult at low H coverage but becomes very exothermic with a moderate activation barrier at high H coverage, suggesting that the oxidation can be carried out readily at elevated temperatures. Doping the Pt cluster with Ru can significantly improve the oxidation thermochemical energy and moderately reduce the activation barrier. The results are consistent with experimental observations. We found that CO reduction by hydrogen to form formaldehyde is moderately endothermic. However, the reaction is predicted to be kinetically difficult due to the relatively high activation barriers associated with the sequential H attacks to the CO molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steele B C H. Fuel-cell technology: Running on natural gas. Nature, 1999, 400(6745): 619–621

    Article  CAS  Google Scholar 

  2. Steele B C H, Heinzel A. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352

    Article  CAS  Google Scholar 

  3. Camara G A, Ticianelli E A, Mukerjee S, Lee S J, McBreen J. The CO poisoning mechanism of the hydrogen oxidation reaction in proton exchange membrane fuel cells. J Electrochem Soc, 2002, 149(6): A748–A753

    Article  CAS  Google Scholar 

  4. Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, Liu Z-S, Wang H, Shen J. A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. J Power Sources, 2007, 165(2): 739–756

    Article  CAS  Google Scholar 

  5. Igarashi H, Uchida H, Suzuki M, Sasaki Y, Watanabe M. Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite. Appl Catal A: General, 1997, 159(1–2): 159–169

    Article  CAS  Google Scholar 

  6. Park S M, O’Brien T J, Effects of several trace contaminants on fuel cell performance. Technical Report (#DOE/METC/RI-80/16). Department of Energy, Morgantown, WV, USA, 1980

    Google Scholar 

  7. Bellows R J, Marucchi-Soos E P, Buckley D T. Analysis of reaction kinetics for carbon monoxide and carbon dioxide on polycrystalline platinum relative to fuel cell operation. Ind Eng Chem Res, 1996, 35(4): 1235–1242

    Article  CAS  Google Scholar 

  8. Jiang R, Kunz H R, Fenton J M. Electrochemical oxidation of H2 and H2/CO mixtures in higher temperature (T cell > 100°C) proton exchange membrane fuel cells: Electrochemical impedance spectroscopy. J Electrochem Soc, 2005, 152(7): A1329–A1340

    Article  CAS  Google Scholar 

  9. Divisek J, Oetjen H F, Peinecke V, Schmidt V M, Stimming U. Components for PEM fuel cell systems using hydrogen and CO containing fuels. Electrochim Acta, 1998, 43(24): 3811–3815

    Article  CAS  Google Scholar 

  10. Li Q, He R, Gao J-A, Jensen J O, Bjerrum N J. The CO poisoning effect in PEMFCs operational at temperatures up to 200°C. J Electrochem Soc, 2003, 150(12): A1599–A1605

    Article  CAS  Google Scholar 

  11. Zhang J, Xie Z, Zhang J, Tang Y, Song C, Navessin T, Shi Z, Song D, Wang H, Wilkinson D P, Liu Z-S, Holdcroft S. High temperature PEM fuel cells. J Power Sources, 2006, 160(2): 872–891

    Article  CAS  Google Scholar 

  12. Lakshmanan B, Huang W, Olmeijer D, Weidner J W. Polyetheretherketone membranes for elevated temperature PEMFCs. Electrochem Solid State Lett, 2003, 6(12): A282–A285

    Article  CAS  Google Scholar 

  13. Ralph T R, Hogarth M P. Catalysis for low temperature fuel cells. Platinum Metal Rev, 2002, 46(3): 117–135

    CAS  Google Scholar 

  14. Giorgi L, Pozio A, Bracchini C, Giorgi R, Turtù S. H2 and H2/CO oxidation mechanism on Pt/C, Ru/C and Pt-Ru/C electrocatalysts. J Appl Electrochem, 2001, 31(3): 325–334

    Article  CAS  Google Scholar 

  15. Christoffersen E, Liu P, Ruban A, Skriver H L, Nskov J K. Anode materials for low-temperature fuel cells: A density functional theory study. J Catal, 2001, 199(1): 123–131

    Article  CAS  Google Scholar 

  16. Alayoglu S, Nilekar A U, Mavrikakis M, Eichhorn B. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater, 2008, 7(4): 333–338

    Article  CAS  Google Scholar 

  17. Waszczuk P, Lu G Q, Wieckowski A, Lu C, Rice C, Masel R I. UHV and electrochemical studies of CO and methanol adsorbed at platinum/ ruthenium surfaces, and reference to fuel cell catalysis. Electrochim Acta, 2002, 47(22–23): 3637–3652

    Article  CAS  Google Scholar 

  18. Lu C, Masel R I. The effect of ruthenium on the binding of CO, H2, and H2O on Pt(110). J Phys Chem B, 2001, 105(40): 9793–9797

    Article  CAS  Google Scholar 

  19. Tong Y Y, Kim H S, Babu P K, Waszczuk P, Wieckowski A, Oldfield E. An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst. J Am Chem Soc, 2002, 124(3): 468–473

    Article  CAS  Google Scholar 

  20. Baschuk J J, Li X. Carbon monoxide poisoning of proton exchange membrane fuel cells. Int J Energy Res, 2001, 25(8): 695–713

    Article  CAS  Google Scholar 

  21. Koper M T M, Shubina T E, van Santen R A. Periodic density functional study of CO and OH adsorption on Pt-Ru alloy surfaces: Implications for CO tolerant fuel cell catalysts. J Phys Chem B, 2002, 106(3): 686–692

    Article  CAS  Google Scholar 

  22. Shah A A, Sui P C, Kim G S, Ye S. A transient PEMFC model with CO poisoning and mitigation by O2 bleeding and Ru-containing catalyst. J Power Sources, 2007, 166(1): 1–21

    Article  CAS  Google Scholar 

  23. Bleakley K, Hu P. A density functional theory study of the interaction between CO and O on a Pt Surface: CO/Pt(111), O/Pt(111), and CO/O/Pt(111). J Am Chem Soc, 1999, 121(33): 7644–7652

    Article  CAS  Google Scholar 

  24. Greeley J, Mavrikakis M. Near-surface alloys for hydrogen fuel cell applications. Catal Today, 2006, 111(1–2): 52–58

    Article  CAS  Google Scholar 

  25. Greeley J, Mavrikakis M. Alloy catalysts designed from first principles. Nat Mater, 2004, 3: 810–815

    Article  CAS  Google Scholar 

  26. Dunietz B D, Markovic N M, Ross P N, Head-Gordon M. Initiation of electro-oxidation of CO on Pt based electrodes at full coverage conditions simulated by ab initio electronic structure calculations. J Phys Chem B, 2004, 108(28): 9888–9892

    Article  CAS  Google Scholar 

  27. Saravanan C, Dunietz B D, Markovic N M, Somorjai G A, Ross P N, Head-Gordon M. Electro-oxidation of CO on Pt-based electrodes simulated by electronic structure calculations. J Electroanal Chem, 2003, 554-555: 459–465

    Article  CAS  Google Scholar 

  28. Blackman G S, Xu M L, Ogletree D F, Van Hove M A, Somorjai G A. Mix of molecular adsorption sites detected for disordered CO on Pt(111) by diffuse low-energy electron diffraction. Phys Rev Lett, 1988, 61(20): 2352

    Article  CAS  Google Scholar 

  29. Liu P, Logadottir A, Nøskov J K. Modeling the electro-oxidation of CO and H2/CO on Pt, Ru, PtRu and Pt3Sn. Electrochim Acta, 2003, 48(25–26): 3731–3742

    Article  CAS  Google Scholar 

  30. Papoian G, Nørskov J K, Hoffmann R. A comparative theoretical study of the hydrogen, methyl, and ethyl chemisorption on the Pt(111) surface. J Am Chem Soc, 2000, 122(17): 4129–4144

    Article  CAS  Google Scholar 

  31. Anderson A B, Grantscharova E. Catalytic effect of ruthenium in ruthenium-platinum alloys on the electrooxidation of methanol. Molecular orbital theory. J Phys Chem, 1995, 99(22): 9149–9154

    Article  CAS  Google Scholar 

  32. Gasteiger H A, Markovic N, Ross P N, Cairns E J. Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys. J Phys Chem, 1994, 98(2): 617–625

    Article  CAS  Google Scholar 

  33. Petersson M, Jonsson D, Persson H, Cruise N, Andersson B. Ozone promoted carbon monoxide oxidation on platinum/γ-alumina catalyst. J Catal, 2006, 2238(2): 321–329

    Article  CAS  Google Scholar 

  34. Chen L, Cooper A C, Pez G P, Cheng H. Density functional study of sequential H2 dissociative chemisorption on a Pt6 cluster. J Phys Chem C, 2007, 111: 5514–5519

    Article  CAS  Google Scholar 

  35. Zhou C, Wu J, Nie A, Forrey R C, Tachibana A, Cheng H. On the sequential hydrogen dissociative chemisorption on small platinum clusters: A density functional theory study. J Phys Chem C, 2007, 111(34): 12773–12778

    Article  CAS  Google Scholar 

  36. Hammer B, Hansen L B, Nøskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B, 1999, 59(11): 7413–7421

    Article  Google Scholar 

  37. Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys, 1990, 92(1): 508–517

    Article  CAS  Google Scholar 

  38. Delley B. From molecules to solids with the DMol3 approach. J Chem Phys, 2000, 113(18): 7756–7764

    Article  CAS  Google Scholar 

  39. Koeleman B J J, de Zwart S T, Boers A L, Poelsema B, Verheij L K. Information on adsorbate positions from low-energy recoil scattering: Adsorption of hydrogen on Pt. Phys Rev Lett, 1986, 56(11): 1152–1155

    Article  CAS  Google Scholar 

  40. Okamoto Y. Comparison of hydrogen atom adsorption on Pt clusters with that on Pt surfaces: A study from density-functional calculations. Chem Phys Lett, 2006, 429(1–3): 209–213

    Article  CAS  Google Scholar 

  41. Bhatia K K, Wang C-Y. Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed. Electrochim Acta, 2004, 49(14): 2333–2341

    Article  CAS  Google Scholar 

  42. Alavi A, Hu P, Deutsch T, Silvestrelli P L, Hutter J. CO oxidation on Pt(111): An ab initio density functional theory study. Phys Rev Lett, 1998, 80(16): 3650–3653

    Article  CAS  Google Scholar 

  43. Ertl G. Reactions at well-defined surfaces. Surf Sci, 1994, 299-300: 742–754

    Article  CAS  Google Scholar 

  44. Rzeznicka I, de la Garza L M, Matsushima T. Surface phase transitions of Pt(110) studied by desorption dynamics of product CO2 in steady-state CO oxidation. J Vac Sci Technol A, 2002, 20(4): 1475–1480

    Article  CAS  Google Scholar 

  45. Rzeznicka I, Moula M G, de la Garza L M, Ohno Y, Matsushima T. CO2 desorption dynamics on specified sites and surface phase transitions of Pt(110) in steady-state CO oxidation. J Chem Phys, 2003, 119(18): 9829–9841

    Article  CAS  Google Scholar 

  46. Clay C, Haq S, Hodgson A. Hydrogen bonding in mixed OH+H2O overlayers on Pt(111). Phys Rev Lett, 2004, 92(4): 046102

    Article  CAS  Google Scholar 

  47. Eichler A, Hafner J. Reaction channels for the catalytic oxidation of CO on Pt(111). Phys Rev B, 1999, 59(8): 5960–5967

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JinPing Wu or HanSong Cheng.

Additional information

Supported by the National Natural Science Foundation of China for Youth (Grant No. 20703040)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, C., Yao, S., Han, B. et al. A mechanistic study of CO removal on a small H-saturated platinum cluster. Sci. China Ser. B-Chem. 51, 1187–1196 (2008). https://doi.org/10.1007/s11426-008-0135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0135-z

Keywords

Navigation