Skip to main content
Log in

Experimental and Theoretical Investigation on Masonry after High Temperature Exposure

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The results of experimental investigation on the mechanical properties of clay brick masonry after high temperature exposition are here presented. The adopted physical model of masonry means to represent both new and old load bearing walls, so to get useful and applicable results. Uniaxial and diagonal compressive tests were carried on masonry samples exposed to 300 and 600°C. Samples of the component materials were tested in compression as well, and the elastic moduli of bricks and mortar were also measured. The results allow to evaluate the levels of residual strength and stiffness of all tested materials after exposure to high temperatures. Finally, property-temperature laws of mechanical decay for masonry, brick and mortar after high temperature exposition are here proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

Subscript θ :

denotes residual values of properties at temperature θ

E :

Initial elastic modulus of masonry (N/mm2)

E sec :

Secant elastic modulus of masonry at the maximum stress (N/mm2)

E b :

Initial elastic modulus of brick (N/mm2)

E m :

Initial elastic modulus of mortar (N/mm²)

f c :

Compressive strength of masonry (N/mm2)

f v :

Shear strength of masonry (N/mm2)

f bc :

Compressive strength of brick (N/mm2)

f bt :

Tensile strength of brick (N/mm2)

f mc :

Compressive strength of mortar (N/mm2)

f mf :

Flexural strength of mortar (N/mm2)

G :

Shear modulus of masonry (N/mm2)

γ :

Shear strain

γ 1 :

Peak shear strain

ε:

Normal strain

ε c1 :

Peak compressive strain of masonry

ε c2 :

Ultimate compressive strain of masonry (at 50% of the peak stress, in the post peak branch)

θ:

temperature (°C)

ν:

Poisson’s ratio of masonry

σ:

Normal stress (N/mm2)

τ:

Shear stress (N/mm2)

References

  1. Rossi V (2003) La sicurezza del patrimonio culturale in caso di incendio. Built heritage and its protection—43th International Fire-fighters’ Workshop, Moreton in Marsh, UK, 30th September–2nd October 2003

  2. Bukowski RW, Nuzzolese V, Bindo M (2003) Performance-based fire protection of historical structures, Proc. Forum for International Cooperation on Fire Research, October 23rd, 2001, Milan, Italy, pp39–51

  3. Nassi L (2006) Sistemi antincendio nelle biblioteche e negli edifici storici, Proc. Convegno nazionale AntIncendio, Roma (in Italian)

  4. CSE-ANDIL (1995) Ricerca sperimentale per la determinazione della resistenza al fuoco di varie tipologie di solai e pannelli murari con elementi di laterizio, svolta in collaborazione con ANDIL—AssoLaterizi, Centro Studi ed Esperienze Antincendi—Roma (in Italian)

  5. Russo S, Boscato G, Sciarretta F (2008) Behaviour of a historical masonry structure subjected to fire. Mason Int 21(1):1–14

    Google Scholar 

  6. Sciarretta F (2010) Analisi teorico-sperimentale di muratura malta-mattoni soggetta ad alte temperature. PhD dissertation, University of Trento (in Italian)

  7. Abrams MS (1979) Behavior of inorganic materials in fire. In: Smith EE, Harmathy TZ (eds) Design of buildings for fire safety. A symposium sponsored by ASTM committee E05 for fire standards. ASTM STP 685, pp14–73

  8. Yüzer N, Aköz F, Öztürk LD (2004) Compressive strength—color change relation in mortars at high temperature. Cem Concr Res 34:1803–1807. doi:10.1016/j.cemconres.2004.01.015

    Article  Google Scholar 

  9. Felicetti R, Gambarova PG (1998) Effects of high temperature on the residual compressive strength of high-strength siliceous concretes. ACI Mater J 95-M37:395–406

    Google Scholar 

  10. Bingöl AF, Gül R (2008) Effect of elevated temperatures and cooling regimes on normal strength concrete. Fire Mater 33:79–88. doi:10.1002/fam.987

    Article  Google Scholar 

  11. Cülfik MS, Özturan T (2002) Effect of elevated temperatures on the residual mechanical properties of high-performance mortar. Cem Concr Res 32:809–816

    Article  Google Scholar 

  12. Arioz O (2007) Effect of elevated temperatures on properties of concrete. Fire Saf J 42:516–522. doi:10.1016/j.firesaf.2007.01.003

    Article  Google Scholar 

  13. Felicetti R, Colombo M (2006) Nuove tecniche non distruttive per la stima del danno da incendio nelle strutture in calcestruzzo armato. In: Russo S, Siviero E (eds) Convegno nazionale Sperimentazione su Materiali e Strutture, Università IUAV di Venezia, pp 53–63 (in Italian)

  14. Xiao J-Zh, König G (2004) Study on concrete at high temperatures in China—an overview. Fire Saf J 39:89–103. doi:10.1016/S0379-7112(03)0093-6

    Article  Google Scholar 

  15. Baker G (1996) The effect of exposure to elevated temperatures on the fracture energy of plain concrete. Mater Struct 29:383–388

    Article  Google Scholar 

  16. RILEM Technical Committee (2007) Recommendation of RILEM TC 200 HTC: mechanical concrete properties at high temperatures—modelling and applications Part 2: stress-strain relation. Mater Struct 40:855–864. doi:10.1617/s11527-007-9286-1

    Article  Google Scholar 

  17. Drysdale D (1999) An introduction to fire dynamics, 2nd edn. Wiley & sons, Chichester

    Google Scholar 

  18. Nadjai A, O’Garra M, Ali FA, Jurgen R (2006) Compartment masonry walls in fire situations. Fire Technol 42:211–231. doi:10.1007/s10694-006-7509-6

    Article  Google Scholar 

  19. Nguyen ThD, Meftah F, Chammas R, Mebarki A (2009) The behaviour of masonry walls subjected to fire: modelling and parametric studies in the case of hollow burnt-clay bricks. Fire Saf J 44:629–641. doi:10.1016/j.firesaf.2008.12.006

    Article  Google Scholar 

  20. Russo S, Sciarretta F (2009) Residual strength of traditional brick masonry subjected to high temperatures. In: Mazzolani F (ed) Protection of historical buildings—ProHiTech 09, Rome, 2009, Balkema, pp 1417–1422

  21. CEN/TC 250 (2005) Eurocode 6: design of masonry structures—Part 1–2: general rules—structural fire design, UNI EN 1996-1-2

  22. Phan LT, Carino NJ (2003) Code provisions for high strength concrete strength-temperature relationship at elevated temperatures. Mater Struct 36:91–98

    Google Scholar 

  23. Husem M (2006) The effects of high temperature on compressive and flexural strength of ordinary and high performance concrete. Fire Saf J 41:155–163. doi:10.1016/j.firesaf.2005.12.002

    Article  Google Scholar 

  24. Yang H, Lin Y, Hsiao Ch, Liu J-Y (2009) Evaluating residual compressive strength of concrete at elevated temperatures using ultrasonic pulse velocity. Fire Saf J 44:121–130. doi:10.1016/j.firesaf.2008.05.003

    Article  Google Scholar 

  25. Gei M, Bigoni D, Guicciardi S (2004) Failure of silicon nitride under uniaxial compression at high temperature. Mech Mater 36:335–345. doi:10.1016/S0167-6636(03)00063-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Terreal Italia—San Marco Laterizi s.r.l., Noale (VE), for the support, and all the technicians at the Laboratory of Strength of Materials (LabSCo) of IUAV University of Venice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sciarretta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russo, S., Sciarretta, F. Experimental and Theoretical Investigation on Masonry after High Temperature Exposure. Exp Mech 52, 341–359 (2012). https://doi.org/10.1007/s11340-011-9493-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-011-9493-0

Keywords

Navigation