Skip to main content
Log in

A Linearized Method to Measure Dynamic Friction of Microdevices

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

We propose and evaluate a linearized method to measure dynamic friction between micromachined surfaces. This linearized method reduces the number of data points needed to obtain dynamic friction data, minimizing the effect of wear on sliding surfaces during the measurement. We find that the coefficient of dynamic friction is lower than the coefficient of static friction, while the adhesive pressure is indistinguishable for the two measurements. Furthermore, after an initial detailed measurement is made on a device type, the number of trial runs required to take the data on subsequent devices can be reduced from 200 to approximately 20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sniegowski JJ, de Boer MP (2000) IC-compatible polysilicon surface micromachining. Annu Rev Mater Sci 30:297.

    Article  Google Scholar 

  2. Chau KHL, Sulouff RE (1998) Technology for the high-volume manufacturing of integrated surface-micromachined accelerometer products. Microelectron J 299:579.

    Article  Google Scholar 

  3. Schuster J, Monk D (2000) Micromachined pressure sensors pave way for new process solutions. Control Solut 7311:43.

    Google Scholar 

  4. Tanner DM, Dugger MT (2003) Wear mechanisms in a reliability methodology. In: Proc. of the SPIE, vol. 4980, pp 22–40.

  5. Hornbeck LJ (1995) Projection displays and MEMS: timely convergence for a bright future. In: Proc. of the SPIE, vol. 2639. Austin, TX, pp 2–12.

  6. Henck SA (1997) Lubrication of digital micromirror devices. Tribol Lett 3:239.

    Article  Google Scholar 

  7. Ashurst WR, Yau C, Carraro C, Maboudian R, Dugger MT (2001) Dichlorodimethylsilane as an anti-stiction monolayer for MEMS: a comparison to the octadecyltrichlosilane self-assembled monolayer. J Microelectromech Syst 101:41.

    Article  Google Scholar 

  8. Tas NR, Gui C, Elwenspoek M (2003) Static friction in elastic adhesion contacts in MEMS. J Adh Sc Tech 174:547.

    Article  Google Scholar 

  9. Timpe SJ, Komvopoulos K (2006) The effect of adhesion on the static friction properties of sidewall contact interfaces of microelectromechanical devices. J Microelectromech Syst 156:1612.

    Article  Google Scholar 

  10. Alsem DH, Stach EA, Dugger MT, Enachescu M, Ritchie RO (2007) An electron microscopy study of wear in polysilicon microelectromechanical systems in ambient air. Thin Solid Films 5156:3259.

    Article  Google Scholar 

  11. Lim MG, Chang JC, Schultz DP, Howe RT, White RM (1990) Polysilicon microstructures to characterize static friction. In: Proc. IEEE MEMS Workshop. Napa Valley, CA, USA, pp 82–88.

  12. Corwin AD, de Boer MP (2004) Effect of adhesion on dynamic and static friction in surface micromachining. Appl Phys Lett 8413:2451.

    Article  Google Scholar 

  13. Eapen KC, Smallwood SA, Zabinski JS (2006) Lubrication of MEMS under vacuum. Surf Coat Tech 2016:2289.

    Article  Google Scholar 

  14. Gabriel KJ, Behi F, Mahadevan R, Mehregany M (1990) In situ friction and wear measurements in integrated polysilicon mechanisms. Sens Actuators, A A21–A23:184.

    Article  Google Scholar 

  15. Turner KL, Hartwell PG, Macdonald NC (1999) Multi-dimensional MEMS motion characterization using laser vibrometry. In: Transducers ’99 The 10th International Conference on Solid-State Sensors and Actuators. Sendai, Japan, pp 1144–1147.

  16. de Boer MP, Luck DL, Ashurst WR, Corwin AD, Walraven JA, Redmond JM (2004) High-performance surface-micromachined inchworm actuator. J Microelectromech Syst 131:63.

    Article  Google Scholar 

  17. Tang WC, Nguyen TCH, Howe RT (1989) Laterally driven polysilicon resonant microstructures. Sens Actuators A 201–2:25.

    Article  Google Scholar 

  18. Miller SL, Rodgers MS, La Vigne G, Sniegowski JJ, Clews PJ, Tanner DM, Peterson KA (1999) Failure modes in surface micromachined microelectromechanical actuation systems. Microelectron Reliab 398:1229.

    Article  Google Scholar 

  19. Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc Roy Soc Lond A 295:300.

    Article  Google Scholar 

  20. Hankins MG, Resnick PJ, Clews PJ, Mayer TM, Wheeler DR, Tanner DM, Plass RA (2003) Vapor deposition of amino-functionalized self-assembled monolayers on MEMS. In: Proceedings of the SPIE, vol. 4980. San Francisco, pp 238–247.

  21. Mayer TM, de Boer MP, Shinn ND, Clews PJ, Michalske TA (2000) Chemical vapor deposition of fluoroalkylsilane monolayer films for adhesion control in microelectromechanical systems. J Vac Sci Technol, B 185:2433.

    Article  Google Scholar 

  22. Coulomb CA (1785) The theory of simple machines (in French). Mem Math Phys Acad Sci 10:161–331.

    Google Scholar 

  23. DelRio FW, de Boer MP, Knapp JA, Reedy ED, Clews PJ, Dunn ML (2005) The role of van der Waals forces in adhesion of micromachined surfaces. Nature Materials 48:629–634.

    Article  Google Scholar 

Download references

Acknowledgments

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Corwin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corwin, A.D., de Boer, M.P. A Linearized Method to Measure Dynamic Friction of Microdevices. Exp Mech 49, 395–401 (2009). https://doi.org/10.1007/s11340-008-9158-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-008-9158-9

Keywords

Navigation