Skip to main content
Log in

Influence of Molecular Conformation on the Constitutive Response of Polyethylene: A Comparison of HDPE, UHMWPE, and PEX

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The current work presents the characterization and comparison of the mechanical response of three different industrial forms of polyethylene. Specifically, high-density polyethylene (HDPE), ultra high molecular weight polyethylene (UHMWPE), and cross-linked polyethylene (PEX) were tested in compression as a function of temperature (−75 to 100°C) and strain-rate (10−4 to 2,600 s−1). The responses of UHMWPE and PEX are very similar, whereas HDPE exhibits some differences. The HDPE samples display a significantly higher yield stress followed by a flat flow behavior. Conversely UHMWPE and PEX both exhibit significant strain hardening after yield. The temperature and strain-rate dependence are captured by simple linear and logarithmic fits over the full range of conditions investigated. The yield behavior is presented in terms of an empirical mapping function that is extended to analytically solve for the mapping constant. The power-law dependence on strain-rate observed in some polymers is explained using this mapping function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hamdan S, Swallowe GM (1996) J Mater Sci 31:1415.

    Article  Google Scholar 

  2. van der Sanden MCM, Meijer HEH (1994) Polymer 35:2774.

    Article  Google Scholar 

  3. Povolo F, Schwartz G, Hermidia EB (1996) J Appl Polym Sci 61:109.

    Article  Google Scholar 

  4. Dioh NN, Ivankovic A, Leevers PS, Williams JG (1994) J de Physique IV Colloq 8 (DYMAT 94) 4:119.

    Google Scholar 

  5. Walley SM, Field JE, Pope PH, Safford NA (1989) Philos Trans R Soc Lond A Phys Sci Eng 328:1.

    Google Scholar 

  6. Walley SM, Field JE (1994) DYMAT J 1:211.

    Google Scholar 

  7. Ward IM, Hadley DW (1993) Mechanical properties of solid polymers. Wiley, Chichester, England.

    Google Scholar 

  8. Rae PJ, Dattelbaum DM (2004) Polymer 45:7615.

    Article  Google Scholar 

  9. Rae PJ, Brown EN (2005) Polymer 46:8128.

    Article  Google Scholar 

  10. Rae PJ, Brown EN, Clements BE, Dattelbaum DM (2005) J Appl Phys 98:063521.

    Article  Google Scholar 

  11. Rae PJ, Brown EN, Orler EB (2007) Polymer 48:598.

    Article  Google Scholar 

  12. Brown EN, Dattelbaum DM (2005) Polymer 46:3056.

    Article  Google Scholar 

  13. Brown EN, Rae PJ, Gray GT III (2006) J Phys IV France 134:935.

    Article  Google Scholar 

  14. Brown EN, Rae PJ, Orler EB, Gray GT III, Dattelbaum DM (2006) Mater Sci Eng C 26:1338.

    Article  Google Scholar 

  15. Brown EN, Rae PJ, Orler EB (2006) Polymer 47:7506.

    Article  Google Scholar 

  16. Brown EN, Trujillo CP, Gray GT III, Rae PJ, Bourne NK (2007) J Appl Phys 101:024916.

    Article  Google Scholar 

  17. Lee CS, Yeh GSY, Caddell RM (1972) Mater Sci Eng 10:241.

    Article  Google Scholar 

  18. Kurtz SM, Pruitt L, Jewett CW, Crawford RP, Crane DJ, Edidin AA (1998) Biomaterials 19:1989.

    Article  Google Scholar 

  19. Drozdov AD, Christiansen J deC (2003) Mech Res Commun 30:431.

    Article  Google Scholar 

  20. Mourad AHI, Elsayed HF, Barton DC, Kenawy M, Abdel-Latif LA (2003) Int J Fract 120:501.

    Article  Google Scholar 

  21. Jordon J, Siviour CR, Brown EN (2006) submitted to Polymer.

  22. Edidin AA, Giddings AL, Kurtz SM (1999) Adv Bioeng ASME 43:127.

    Google Scholar 

  23. Kurtz SM, Rimnac CM, Pruitt L, Jewett CW, Goldberg V, Edidin AA (2000) Biomaterials 21:283.

    Article  Google Scholar 

  24. Puértolas JA, Larrea A, Gómez-Barrena E (2001) Biomaterials 22:2107.

    Article  Google Scholar 

  25. Baker DA, Ballare A, Pruitt L (2003) J Biomed Mater Res 66A:146.

    Article  Google Scholar 

  26. Mishra S, Viano A, Fore N, Lewis G, Ray A (2003) Bio-Med Mater Eng 13:135.

    Google Scholar 

  27. Sobieraj MC, Kurtz SM, Rimnac CM (2005) Biomaterials 26:6430.

    Article  Google Scholar 

  28. G’Sell C, Jonas JJ (1979) J Mater Sci 14:583.

    Google Scholar 

  29. G’Sell C, Dahoun A (1994) Mater Sci Eng A 175:183.

    Article  Google Scholar 

  30. Kitagawa M, Onoda T, Mizutani K (1992) J Mater Sci 27:13.

    Article  Google Scholar 

  31. Tuttle ME, Semeliss M, Wong R (1992) Exp Mech 32:1.

    Article  Google Scholar 

  32. Lee BJ, Argon AS, Parks DM, Ahzi S, Bartczak Z (1993) Polymer 34:3555.

    Article  Google Scholar 

  33. Boontongkong Y, Cohen RE, Spector M, Bellare A (1998) Polymer 39:6391.

    Article  Google Scholar 

  34. Galeski A, Bartczak Z, Argon AS, Cohen RE (1992) Macromolecules 25:5705.

    Article  Google Scholar 

  35. Smith CW, Wootton RJ, Evans KE (1999) Exp Mech 39:356.

    Article  Google Scholar 

  36. Zhang AY, Jisheng E, Allan PS, Bevis MJ (2002) J Mater Sci 37:3189.

    Article  Google Scholar 

  37. Yong Z, Weiguang Z, Decai Y (1993) J Mater Sci Lett 12:1309.

    Article  Google Scholar 

  38. Khonakdar HA, Wagenknecht U, Jafari SH, Hassler R, Eslami H (2004) Adv Polym Technol 23:307.

    Article  Google Scholar 

  39. Lim KLK, Ishak ZAM, Ishiaku US, Fuad AMY, Yusof AH, Czigany T, Pukanszky B, Ogunniyi DS (2005) J Appl Polym Sci 97:413.

    Article  Google Scholar 

  40. Odegard GM, Gates T, Herring HM (2005) Exp Mech 45:130.

    Article  Google Scholar 

  41. Siviour CR, Walley SM, Proud WG, Field JE (2005) Polymer 46:12546.

    Article  Google Scholar 

  42. Walley SM, Field JE, Pope PH, Safford NA (1991) J de Physique III 1:1889.

    Article  Google Scholar 

  43. El-Aguizy T, Plante J-S, Slocum AH, Vogan JD (2005) Rev Sci Instrum 76(075108):1.

    Google Scholar 

  44. Trautmann A, Siviour CR, Walley SM, Field JE (2005) Int J Impact Eng 31:523.

    Article  Google Scholar 

  45. Gray GT III, Blumenthal WR, Trujillo CP, Carpenter RW II (1997) J de Physique IV Colloq C3 (EURODYMAT 97) 7:523.

    Google Scholar 

  46. Gray GT III, Blumenthal WR, Idar DJ, Cady CM (1998). In: Schmidt SC, Dandekar DP, Forbes JW (eds) Shock compression of condensed matter-1997, AIP Conference Proceedings, vol 429. AIP, Woodbury, New York, p 583.

  47. Gray GT III, Idar DJ, Blumenthal WR, Cady CM, Peterson PD (1998). In: Short JM, Kennedy JE (eds) Proceedings of the 11th Symposium (International) on Detonation. Snowmass Village, CO, p 76.

  48. Blumenthal WR, Gray GT III, Idar DJ, Holmes MD, Scott PD, Cady CM, Cannon DD (2000). In: Furnish, MD, Chhabildas LC, Hixson RS (eds) Shock Compression of Condensed Matter-1999, AIP Conference Proceedings, vol. 505. AIP, Woodbury, NY, p 671.

  49. Gray GT III, Blumenthal WR (2000) Split-Hopkinson pressure bar testing of soft materials. In: Kuhn H, Medlin D (eds) ASM Handbook, vol. 8: mechanical testing and evaluation. ASM International, Materials Park, Ohio, p 488.

    Google Scholar 

  50. Gray GT III (2000) Classic split-Hopkinson pressure bar testing. In: Kuhn H, Medlin D (eds) ASM handbook, vol. 8: mechanical testing and evaluation. ASM International, Materials Park, Ohio, p 462.

    Google Scholar 

  51. Frantz CE, Follansbee PS, Wright WT (1984) In: Proceedings—8th International Conference on High Energy Rate Fabrication. pp 229–236.

  52. Frew DJ, Forrestal MJ, Chen W (2005) Exp Mech 45:186.

    Article  Google Scholar 

  53. Davis GT, Eby RK (1973) J Appl Phys 44:4274.

    Article  Google Scholar 

  54. Ohberg SM, Fenstermaker SS (1958) J Polym Sci 32:514.

    Article  Google Scholar 

  55. Chang SS (1973) J Polym Sci 43:43.

    Google Scholar 

  56. Ng SC, Hosea TJC, Goh SH (1987) Polym Bull 18:155.

    Article  Google Scholar 

  57. Alberola N, Cavaille JY, Perez J (1992) Eur Polym J 28:935.

    Article  Google Scholar 

  58. Fakirov S, Krasteva B (2000) J Macromol Sci B 39:297.

    Article  Google Scholar 

  59. Kwon YK, Boller A, Pyda M, Wunderlich B (2000) Polymer 41:6237.

    Article  Google Scholar 

  60. Pyda M, Wunderlich B (2002) J Macromol Sci B 40:1245.

    Google Scholar 

  61. Briscoe BJ, Nosker RW (1985) Polym Commun 26:307.

    Google Scholar 

  62. Wunderlich B (1976) Macromolecular physics, vol. 2. Academic, New York, p 88.

    Google Scholar 

  63. Bartczak Z, Lezak E (2005) Polymer 46:6050.

    Article  Google Scholar 

  64. Cady CM, Blumenthal WR, Gray GT III, Idar DJ (2006) Polym Eng Sci 46:813.

    Article  Google Scholar 

Download references

Acknowledgements

The contributions at LANL were performed under the auspices of the US Department of Energy operated by the Los Alamos National Security LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, E.N., Willms, R.B., Gray, G.T. et al. Influence of Molecular Conformation on the Constitutive Response of Polyethylene: A Comparison of HDPE, UHMWPE, and PEX. Exp Mech 47, 381–393 (2007). https://doi.org/10.1007/s11340-007-9045-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-007-9045-9

Keywords

Navigation