Skip to main content
Log in

Production of β-xylosidase from Trichoderma asperellum KIF125 and its application in efficient hydrolysis of pretreated rice straw with fungal cellulase

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

On-site cellulase and hemicellulase production is a promising way to reduce enzyme cost in the commercialization of the lignocellulose-to-ethanol process. A hemicellulase-producing fungal strain suitable for on-site enzyme production was selected from cultures prepared using wet disc-milling rice straw (WDM-RS) and identified as Trichoderma asperellum KIF125. KIF125 hemicellulase showed uniquely high abundance of β-xylosidase in the xylanolytic enzyme system compared to other fungal hemicellulase preparations. Supplementation of Talaromyces cellulolyticus cellulase with KIF125 hemicellulase was more effective than that with the hemicellulases from other fungal sources in reducing the total enzyme loading for the improvement of xylose yield in the hydrolysis of ball-milling RS, due to its high β-xylosidase dominance. β-Xylosidase in KIF125 hemicellulase was purified and classified as a glycosyl hydrolase family 3 enzyme with relatively high specificity for xylobiose. The production of KIF125 β-xylosidase in the fermentor was estimated as 118 U/g-WDM-RS (2350 U/L culture) at 48 h. These results demonstrate that KIF125 is promising as a practical hemicellulase source to combine with on-site cellulase production using T. cellulolyticus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. Bioenerg Res 3:82–92

    Article  Google Scholar 

  • Bech L, Busk PK, Lange L (2015) Cell wall degrading enzymes in Trichoderma asperellum grown on wheat bran. Fungal Genom Biol 4:116

    Google Scholar 

  • Chipeta ZA, du Preez JC, Christopher L (2008) Effect of cultivation pH and agitation rate on growth and xylanase production by Aspergillus oryzae in spent sulphite liquor. J Ind Microbiol Biotechnol 35:587–594

    Article  CAS  Google Scholar 

  • Cochet N, Tyagi RD, Ghose TK, Lebeault JM (1984) ATP measurement for cellulase production control. Biotechnol Lett 6:155–160

    Article  CAS  Google Scholar 

  • Fang X, Yano S, Inoue H, Sawayama S (2009) Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J Biosci Bioeng 107(3):256–261

    Article  CAS  Google Scholar 

  • Ferreira GL, Boer CG, Peralta RM (1999) Production of xylanolytic enzymes by Aspergillus tamarii in solid state fermentation. FEMS Microbiol Lett 173:335–339

    Article  CAS  Google Scholar 

  • Fujii T, Fang X, Inoue H, Murakami K, Sawayama S (2009) Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnol Biofuels 2:24

    Article  Google Scholar 

  • Gao D, Uppugundla N, Chundawat SP, Yu X, Hermanson S, Gowda K, Brumm P, Mead D, Balan V, Dale BE (2011) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4:5

    Article  CAS  Google Scholar 

  • Gottschalk LM, de Sousa Paredes R, Teixeira RS, da Silva AS, da Silva Bon EP (2013) Efficient production of lignocellulolytic enzymes xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by the mutant strain Aspergillus awamori 2B.361 U2/1. Braz J Microbiol 44:569–576

    Article  Google Scholar 

  • Gusakov AV (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29:419–425

    Article  CAS  Google Scholar 

  • Herrmann MC, Vrsanska M, Jurickova M, Hirsch J, Biely P, Kubicek CP (1997) The β-d-xylosidase of Trichoderma reesei is a multifunctional β-d-xylan xylohydrolase. Biochem J 321(Pt 2):375–381

    Article  CAS  Google Scholar 

  • Hideno A, Inoue H, Tsukahara K, Fujimoto S, Minowa T, Inoue S, Endo T, Sawayama S (2009) Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresour Technol 100(10):2706–2711

    Article  CAS  Google Scholar 

  • Hideno A, Inoue H, Tsukahara K, Yano S, Fang X, Endo T, Sawayama S (2011) Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source. Enzyme Microb Technol 48(2):162–168

    Article  CAS  Google Scholar 

  • Hong Y, Nizami AS, Bafrani MP, Saville BA, MacLean HL (2013) Impact of cellulase production on environmental and financial metrics for lignocellulosic ethanol. Biofuel Bioprod Bior 7:303–313

    Article  CAS  Google Scholar 

  • Hu J, Arantes V, Saddler JN (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuels 4:36

    Article  CAS  Google Scholar 

  • Hu J, Arantes V, Pribowo A, Saddler JN (2013) The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific. Biotechnol Biofuels 6:112

    Article  CAS  Google Scholar 

  • Ibrahim MF, Razak MN, Phang LY, Hassan MA, Abd-Aziz S (2013) Crude cellulase from oil palm empty fruit bunch by Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 for fermentable sugars production. Appl Biochem Biotechnol 170:1320–1335

    Article  CAS  Google Scholar 

  • Inoue H, Decker SR, Taylor LE II, Yano S, Sawayama S (2014) Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass. Biotechnol Biofuels 7:151

    Article  Google Scholar 

  • Inoue H, Kishishita S, Kumagai A, Kataoka M, Fujii T, Ishikawa K (2015a) Contribution of a family 1 carbohydrate-binding module in thermostable glycoside hydrolase 10 xylanase from Talaromyces cellulolyticus toward synergistic enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 8:77

    Article  Google Scholar 

  • Inoue H, Yano S, Sawayama S (2015b) Effect of β-mannanase and β-mannosidase supplementation on the total hydrolysis of softwood polysaccharides by the Talaromyces cellulolyticus cellulase system. Appl Biochem Biotech 176:1673–1686

    Article  CAS  Google Scholar 

  • Kang SW, Park YS, Lee JS, Hong SI, Kim SW (2004) Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour Technol 91:153–156

    Article  CAS  Google Scholar 

  • Kanna M, Yano S, Inoue H, Fujii T, Sawayama S (2011) Enhancement of β-xylosidase productivity in cellulase producing fungus Acremonium cellulolyticus. AMB Express 1:15

    Article  Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087

    Article  CAS  Google Scholar 

  • Knob A, Terrasan CRF, Carmona EC (2010) β-Xylosidases from filamentous fungi: an overview. World J Microb Biot 26:389–407

    Article  CAS  Google Scholar 

  • Knob A, Fortkamp D, Prolo T, Izidoro SC, Almeida JM (2014) Agro-residues as alternative for xylanase production by filamentous fungi. Bioresources 9:5738–5773

    Google Scholar 

  • Lin H, Wang B, Zhuang R, Zhou Q, Zhao Y (2011) Artificial construction and characterization of a fungal consortium that produces cellulolytic enzyme system with strong wheat straw saccharification. Bioresour Technol 102:10569–10576

    Article  CAS  Google Scholar 

  • Liu Z, Yang X, Sun D, Song J, Chen G, Juba O, Yang Q (2010) Expressed sequence tags-based identification of genes in a biocontrol strain Trichoderma asperellum. Mol Biol Rep 37:3673–3681

    Article  CAS  Google Scholar 

  • Liu G, Zhang J, Bao J (2016) Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous aspen plus modeling. Bioprocess Biosyst Eng 39:133–140

    Article  Google Scholar 

  • Margolles-Clark E, Tenkanen M, Nakari-Setälä T, Penttilä M (1996) Cloning of genes encoding α-l-arabinofuranosidase and β-xylosidase from Trichoderma reesei by expression in Saccharomyces cerevisiae. Appl Environ Microbiol 62:3840–3846

    CAS  Google Scholar 

  • Marx IJ, van Wyk N, Smit S, Jacobson D, Viljoen-Bloom M, Volschenk H (2013) Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse. Biotechnol Biofuels 6:172

    Article  Google Scholar 

  • Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120

    CAS  Google Scholar 

  • Michelin M, Polizeli Mde L, Ruzene DS, Silva DP, Ruiz HA, Vicente AA, Jorge JA, Terenzi HF, Teixeira JA (2012) Production of xylanase and β-xylosidase from autohydrolysis liquor of corncob using two fungal strains. Bioprocess Biosyst Eng 35:1185–1192

    Article  CAS  Google Scholar 

  • Poutanen K, Puls J (1988) Characteristics of Trichoderma reesei β-xylosidase and its use in the hydrolysis of solubilized xylans. Appl Microbiol Biotechnol 28:425–432

    Article  CAS  Google Scholar 

  • Qing Q, Wyman CE (2011) Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnol Biofuels 4:18

    Article  CAS  Google Scholar 

  • Raghuwanshi S, Deswal D, Karp M, Kuhad RC (2014) Bioprocessing of enhanced cellulase production from a mutant of Trichoderma asperellum RCK2011 and its application in hydrolysis of cellulose. Fuel 124:183–189

    Article  CAS  Google Scholar 

  • Selig MJ, Knoshaug EP, Adney WS, Himmel ME, Decker SR (2008) Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresour Technol 99:4997–5005

    Article  CAS  Google Scholar 

  • Semenova MV, Drachevskaya MI, Sinitsyna OA, Gusakov AV, Sinitsyn AP (2009) Isolation and properties of extracellular β-xylosidases from fungi Aspergillus japonicus and Trichoderma reesei. Biochemistry (Mosc) 74:1002–1008

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure NREL technical report TP-510-42618. National renewable energy laboratory (NREL). http://www.nrel.gov/biomass/pdfs/42618.pdf

  • Suwannarangsee S, Arnthong J, Eurwilaichitr L, Champreda V (2014) Production and characterization of multi-polysaccharide degrading enzymes from Aspergillus aculeatus BCC199 for saccharification of agricultural residues. J Microbiol Biotechnol 24:1427–1437

    Article  CAS  Google Scholar 

  • Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480

    Article  Google Scholar 

  • Wang Q, Lin H, Shen Q, Fan X, Bai N, Zhao Y (2015) Characterization of cellulase secretion and Cre1-mediated carbon source repression in the potential lignocellulose-degrading strain Trichoderma asperellum T-1. PLoS ONE 10:e0119237

    Article  Google Scholar 

  • Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–117

    Article  CAS  Google Scholar 

  • Xin D, Ge X, Sun Z, Viikari L, Zhang J (2015) Competitive inhibition of cellobiohydrolase I by manno-oligosaccharides. Enzyme Microb Technol 68:62–68

    Article  CAS  Google Scholar 

  • Yano S, Kitao C, Inoue H, Sawayama S, Imou K, Yokoyama S (2009) A newly isolated hemicellulase-producing fungus for second-generation ethanol production, Aspergillus aculeatus KIF 78. J Environ Biotechnol 9(2):81–87

    Google Scholar 

  • Zhu H, Qu F, Zhu LH (1993) Isolation of genomic DNAs from plants, fungi and bacteria using benzyl-chloride. Nucleic Acids Res 21(22):5279–5280

    Article  CAS  Google Scholar 

  • Zimbardi AL, Sehn C, Meleiro LP, Souza FH, Masui DC, Nozawa MS, Guimarães LH, Jorge JA, Furriel RP (2013) Optimization of β-glucosidase, β-xylosidase and xylanase production by Colletotrichum graminicola under solid-state fermentation and application in raw sugarcane trash saccharification. Int J Mol Sci 14:2875–2902

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Regional Biomass Energy Project of the Ministry of Agriculture, Forestry, and Fisheries of Japan. The authors are grateful to Dr. Akihiro Hideno for useful discussion. The authors would like to thank Ms. Reiko Yoshii for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Inoue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 333 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, H., Kitao, C., Yano, S. et al. Production of β-xylosidase from Trichoderma asperellum KIF125 and its application in efficient hydrolysis of pretreated rice straw with fungal cellulase. World J Microbiol Biotechnol 32, 186 (2016). https://doi.org/10.1007/s11274-016-2145-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2145-x

Keywords

Navigation