Skip to main content
Log in

Removal of toxic chromate using free and immobilized Cr(VI)-reducing bacterial cells of Intrasporangium sp. Q5-1

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Chromate-reducing microorganisms with the ability of reducing toxic chromate [Cr(VI)] into insoluble trivalent chromium [Cr(III)] are very useful in treatment of Cr(VI)-contaminated water. In this study, a novel chromate-reducing bacterium was isolated from Mn/Cr-contaminated soil. Based on morphological, physiological/biochemical characteristics and 16S rRNA gene sequence analyses, this strain was identified as Intrasporangium sp. strain Q5-1. This bacterium has high Cr(VI) resistance with a MIC of 17 mmol l−1 and is able to reduce Cr(VI) aerobically. The best condition of Cr(VI) reduction for Q5-1 is pH 8.0 at 37°C. Strain Q5-1 is also able to reduce Cr(VI) in resting (non-growth) conditions using a variety of carbon sources as well as in the absence of a carbon source. Acetate (1 mmol l−1) is the most efficient carbon source for stimulating Cr(VI) reduction. In order to apply strain Q5-1 to remove Cr(VI) from wastewater, the bacterial cells were immobilized with different matrices. Q5-1 cells embedded with compounding beads containing 4% PVA, 3% sodium alginate, 1.5% active carbon and 3% diatomite showed a similar Cr(VI) reduction rates to that of free cells. In addition, the immobilized Q5-1 cells have the advantages over free cells in being more stable, easier to re-use and minimal clogging in continuous systems. This study provides potential applications of a novel immobilized chromate-reducing bacterium for Cr(VI) bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A (2006) Effect of chromate stress on Escherichia coli K-12. J Bacteriol 188:3371–3381. doi:10.1128/JB.188.9.3371-3381.2006

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association), AWWA (American Water Works Association), WEF (Water Environment Federation) (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Bae WC, Lee HK, Choe YC, Jahng DJ, Lee SH, Kim SJ (2004) Purification and characterization of NADPH dependent Cr(VI) reductase from Escherichia coli ATCC 33456. J Microbiol 43:21–27

    Google Scholar 

  • Bailey RW, Scott EG (1966) Diagnostic microbiology, 2nd edn. The C.V. Mosby Company publisher, Saint Louis

    Google Scholar 

  • Camargo FAO, Bento FM, Okeke BC, Frankenberger WT (2003a) Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J Environ Qual 32:1228–1233

    Article  CAS  Google Scholar 

  • Camargo FAO, Okeke BC, Bento FM, Frankenberger WT (2003b) In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+. Appl Microbiol Biotechnol 62:569–573. doi:10.1007/s00253-003-1291-x

    Article  CAS  Google Scholar 

  • Campos J, Martinez Pacheco M, Cervantes C (1995) Hexavalent chromium reduction by a chromate-resistant Bacillus sp. strain. Antonie Van Leeuwenhoek 68:203–208. doi:10.1007/BF00871816

    Article  CAS  Google Scholar 

  • Cervantes C, Campos GJ (2007) Reduction and efflux of chromate by bacteria. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer, Berlin, pp 407–420

    Chapter  Google Scholar 

  • Cieslak-Golonka M (1995) Toxic and mutagenic effects of Cr(VI)—a review. Polyhedron 15:3667–3689. doi:10.1016/0277-5387(96)00141-6

    Article  Google Scholar 

  • Clark DP (1994) Chromate reductase activity of Enterobacter aero-genes is induced by nitrite. FEMS Microbiol Lett 122:233–238. doi:10.1111/j.1574-6968.1994.tb07173.x

    Article  CAS  Google Scholar 

  • Codd R, Dillon CT, Levina A, Lay PA (2001) Studies on genotoxicity of chromium: from the test tube to the cell. Coord Chem Rev 216–217:537–582. doi:10.1016/S0010-8545(00)00408-2

    Article  Google Scholar 

  • Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36:155–163. doi:10.1080/10408440500534032

    Article  CAS  Google Scholar 

  • Desai C, Jain K, Madamwar D (2008) Evaluation of in vitro Cr(VI) reduction potential in cytosolic extracts. Bioresour Technol 99(14):6059–6069. doi:10.1016/j.biortech.2007.12.046

    Article  CAS  Google Scholar 

  • Elangovan R, Abhipsa S, Rohit B, Ligy P, Chandraraj K (2006) Reduction of Cr(VI) by a Bacillus sp. Biotechnol Lett 28:247–252. doi:10.1007/s10529-005-5526-z

    Article  CAS  Google Scholar 

  • EPD (Environmental Protection Department) (2008) Discharge standard of pollutants for chrome and its compound industry. Environmental Protection Department, P. R. China (In Chinese)

    Google Scholar 

  • Ganguli A, Tripathi AK (2002) Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl Microbiol Biotechnol 58:416–420. doi:10.1007/s00253-001-0871-x

    Article  CAS  Google Scholar 

  • Guo Y, Wang KR, Hu RG (2006) The situation and improved methods for remediation of manganese pollution of cultivated land around a manganese mine in central Hunan. Agric Environ Prot 12:230–232 (In Chinese)

    Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Horitsu H, Futo S, Miyazawa Y, Ogal S, Kawai K (1983) Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerant Pseudomonas ambigua G-1. Agric Biol Chem 51:2417–2420

    Google Scholar 

  • Humphries AC, Nott KP, Hall LD, LE Macaskie (2005) Reduction of Cr(VI) by immobilized cells of Desulfovibrio vulgaris NCIMB 8303 and Microbacterium sp. NCIMB 13776. Biotechnol Bioeng 90(5):589–596. doi:10.1002/bit.20450

    Article  CAS  Google Scholar 

  • Jeyasingh J, Philip L (2005) Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions. J Hazard Mater B 118:113–120. doi:10.1016/j.jhazmat.2004.10.003

    Article  CAS  Google Scholar 

  • Kalakoutskii LV, Kirillova IP, Krasil-nikov NA (1967) A new genus of the Actinomycetales, Intrasporangium gen. nov. J Gen Microbiol 48:79–85

    Google Scholar 

  • Kampfer P, Terenius O, Lindh JM, Faye I (2006) Janibacter anophelis sp. nov., isolated from the midgut of anopheles arabiensis. Int J Syst Evol Microbiol 56:389–392. doi:10.1099/ijs.0.63905-0

    Article  CAS  Google Scholar 

  • Komori K, Rivas A, Toda K, Ohtake H (1990) A method for removal of toxic chromium using dialysis-sac cultures of a chromate-reducing strain of Enterobacter cloacae. Appl Microbiol Biotechnol 33:117–119. doi:10.1007/BF00170582

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5(2):150–163. doi:10.1093/bib/5.2.150

    Article  CAS  Google Scholar 

  • Liu YG, Xu WH, Zeng GM, Li X, Gao H (2006) Cr(VI) reduction by Bacillus sp. isolated from chromium landfill. Process Biochem 41(9):1981–1986. doi:10.1016/j.procbio.2006.04.020

    Article  CAS  Google Scholar 

  • Mclean J, Beveridge TJ (2000) Chromate reduction by a pseudomonad isolated from a site contaminated with chromate copper arsenate. Appl Environ Microbiol 67:1076–1084. doi:10.1128/AEM.67.3.1076-1084.2001

    Article  Google Scholar 

  • Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:51–54. doi:10.1007/s00284-002-3889-0

    Article  CAS  Google Scholar 

  • Myers CR, Carstens BP, Antholine WE, Myers JM (2000) Chromium (VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J Appl Microbiol 88:98–106. doi:10.1046/j.1365-2672.2000.00910.x

    Article  CAS  Google Scholar 

  • Opperman DJ, van Heerden E (2007) Aerobic Cr(VI) reduction by Thermus scotoductus strain SA-01. J Appl Microbiol 103(5):1907–1913. doi:10.1111/j.1365-2672.2007.03429.x

    Article  CAS  Google Scholar 

  • Park CH, Keyhan M, Wielinga B, Fendorf S, Matin A (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66:1788–1795. doi:10.1128/AEM.66.5.1788-1795.2000

    Article  CAS  Google Scholar 

  • Pattanapipitpaisal P, Brown NL, Macaskie LE (2001) Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site. Appl Microbiol Biotechnol 57:257–261. doi:10.1007/s002530100758

    Article  CAS  Google Scholar 

  • Poopal AC, Laxman RS (2008) Hexavalent chromate reduction by immobilized Streptomyces griseus. Biotechnol Lett 30(6):1005–1010. doi:10.1007/s10529-008-9662-0

    Article  CAS  Google Scholar 

  • Puzon GJ, Roberts AG, Kramer DM, Xun L (2005) Formation of soluble organo-chromium(III) complexes after chromate reduction in the presence of cellular organics. Environ Sci Technol 39:2811–2817. doi:10.1021/es048967g

    Article  CAS  Google Scholar 

  • Salunkhe PB, Dhakephalkar PK, Paknikar KM (1998) Bioremediation of hexavalent chromium in soil microcosms. Biotechnol Lett 20:749–751. doi:10.1023/A:1005338820430

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Sarangi A, Krishnan C (2007) Comparison of in vitro Cr(VI) reduction by CFEs of chromate resistant bacteria isolated from chromate contaminated soil. Bioresour Technol 99(10):4130–4137. doi:10.1016/j.biortech.2007.08.059

    Article  CAS  Google Scholar 

  • Seung HS, Suk SC, Kyungmoon P, Yoo YJ (2005) Novel hybrid immobilization of microorganisms and its applications to biological denitrification. Enzyme Microb Technol 37:567–573. doi:10.1016/j.enzmictec.2005.07.012

    Article  CAS  Google Scholar 

  • Sultan S, Hasnain S (2007) Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresour Technol 98(2):340–410. doi:10.1016/j.biortech.2005.12.025

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882. doi:10.1093/nar/25.24.4876

    Article  CAS  Google Scholar 

  • Upreti RK, Shrivastava R, Chaturvedi UC (2004) Gut microflora and toxic metals: chromium as a model. Indian J Med Res 119:49–59

    CAS  Google Scholar 

  • Vaimajala S, Peyton BM, Apel WA, Petersen JN (2002) Chromate reduction in Shewanella oneidensis MR-1 is an inducible process associated with anaerobic growth. Biotechnol Prog 18:290–296. doi:10.1021/bp0202968

    Article  CAS  Google Scholar 

  • Wang YT, Xiao C (1995) Factors affecting hexavalent chromium reduction in pure cultures of bacteria. Water Res 29:2467–2474. doi:10.1016/0043-1354(95)00093-Z

    Article  CAS  Google Scholar 

  • White C, Wilkinson SC, Gadd GM (1995) The role of microorganisms in biosorption of toxic metals and radionuclides. Int Biodeterior Biodegradation 35:17–40. doi:10.1016/0964-8305(95)00036-5

    Article  CAS  Google Scholar 

  • Wilson KH, Blitchington RB, Greene RC (1990) Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 28(9):1942–1946

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30671140) and the Retuning Oversea Scientist Fund of the Ministry of Education, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gejiao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., He, M. & Wang, G. Removal of toxic chromate using free and immobilized Cr(VI)-reducing bacterial cells of Intrasporangium sp. Q5-1. World J Microbiol Biotechnol 25, 1579–1587 (2009). https://doi.org/10.1007/s11274-009-0047-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0047-x

Keywords

Navigation