Skip to main content
Log in

Probiotic potential of lactic acid bacteria isolated from chicken gastrointestinal digestive tract

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study was conducted in order to evaluate the probiotic properties of lactic acid bacteria (LAB) isolated from intestinal tract of broilers and Thai indigenous chickens. The major properties, including the gastric juice and bile salts tolerance, starch, protein and lipid digesting capabilities, and the inhibition on certain pathogenic bacteria were investigated. Three-hundred and twenty-two and 226 LAB strains were isolated from ten broilers and eight Thai indigenous chickens, respectively. The gastrointestinal transit tolerance of these 548 isolates was determined by exposing washed cell suspension at 41°C to simulated gastric juice (pH 2.5) containing pepsin (3 mg ml−1), and to simulated small intestinal juice (pH 8.0) in the presence of pancreatin (1 mg ml−1) and 7% fresh chicken bile, mimicking the gastrointestinal environment. The survival of 20 isolates was found after passing through the gastrointestinal conditions. The survival rates of six strains; KT3L20, KT2CR5, KT10L22, KT5S19, KT4S13 and PM1L12 from the sequential study were 43.68, 37.56, 33.84, 32.89, 31.37 and 27.19%, respectively. Twelve isolates exhibited protein digestion on agar plate but no isolates showed the ability to digest starch and lipid. All 20 LAB showed the antimicrobial activity against Salmonella sp., Staphylococcus aureus and Escherichia coli except one strain which did not show the inhibitory activity toward E. coli. Accordingly, five isolates of selected LAB (KT2L24, KT3L20, KT4S13, KT3CE27 and KT8S16) can be classified as the best probiotics and were identified as Enterococcus faecalis, Enterococcus durans, Enterococcus faecium, Pediococcus pentosaceus, and Enterococcus faecium, respectively. The survival rate of microencapsulation of E. durans KT3L20 under simulated small intestine juice after sequential of simulated gastric juice was also investigated. An extrusion technique exhibited a higher survival rate than emulsion technique and free cell, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ahmad I (2006) Effect of probiotics on broilers performance. Int J Poult Sci 5:593–597

    Article  Google Scholar 

  • Ammor S, Tauveron G, Dofour E, Chevallier I (2006) Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility: 1. Screening and characterization of the antibacterial compounds. Food Contr 17:454–461. doi:10.1016/j.foodcont.2005.02.006

    Article  CAS  Google Scholar 

  • Anadón A, Martínes-Larrañaga MR, Martínes MA (2006) Probiotic for animal nutrition in the European Union. Regulation and safety assessment. Regul Toxicol Pharmacol 45:91–95. doi:10.1016/j.yrtph.2006.02.004

    Article  CAS  Google Scholar 

  • Annan NT, Borza AD, Hansen LT (2008) Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Res Int 41:184–193. doi:10.1016/j.foodres.2007.11.001

    Article  CAS  Google Scholar 

  • Austin B, Stuckey LF, Robertson PA, Efendi I, Griffith DRW (1995) A probiotic strain of Vibrio alginolyticus effective in reducing diseases cause by Aeromonas salmonicida, Vibrio anguillarum and Vibrio ordalii. J Fish Dis 18:93–96. doi:10.1111/j.1365-2761.1995.tb01271.x

    Article  Google Scholar 

  • Begley M, Cormac GMG, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651. doi:10.1016/j.femsre.2004.09.003

    Article  CAS  Google Scholar 

  • Bernbom N, Licht TR, Saadbye P, Vogensen FK, Nørrung B (2006) Lactobacillus plantarum inhibits growth of Listeria monocytogenes in an in vitro continuous flow gut model, but promotes invasion of L. monocytogenes in the gut of gnotobiotic rats. Int J Food Microbiol 108:10–14. doi:10.1016/j.ijfoodmicro.2005.10.021

    Article  CAS  Google Scholar 

  • Chandramouli V, Kailasapathy K, Peiris P, Jones M (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Methods 56:27–35. doi:10.1016/j.mimet.2003.09.002

    Article  CAS  Google Scholar 

  • Collado MC, Gonz’alez A, Gonz’alez R, Hern’andez M, Ferr’us MA, Sanz Y (2005) Antimicrobial peptides are among the antagonistic metabolites produced by Bifidobacterium against Helicobacter pylori. Int J Antimicrob Agents 25:385–391. doi:10.1016/j.ijantimicag.2005.01.017

    Article  CAS  Google Scholar 

  • Condon S (1987) Responses of lactic acid bacteria to oxygen. FEMS Microbiol Lett 46:269–280. doi:10.1111/j.1574-6968.1987.tb02465.x

    Article  CAS  Google Scholar 

  • De Fa’tima Silva Lopes M, Ribeiro T, Abrantes M, Marques JF, Tenreiro R, Crespoa MTB (2005) Antimicrobial resistance profiles of dairy and clinical isolates and type strains of enterococci. Int J Food Microbiol 103:191–198. doi:10.1016/j.ijfoodmicro.2004.12.025

    Article  CAS  Google Scholar 

  • Devriese LA, Collins MD, Wirth R (1992) The Genus Enterococcus. In: Ballows A, Trqper HG, Dworkin M, Harder W, Schleifer K-H (eds) The Prokaryotes, vol 2, 2nd edn. Springer-Verlag, New York, pp 1465–1478

    Google Scholar 

  • Duangchitchareon Y (2006) Selection of probiotic lactic acid bacteria from pickles and fermented plant products. Master of Science Degree Thesis. Chiang Mai University

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    CAS  Google Scholar 

  • González L, Sandoval H, Sacristán N, Castro JM, Fresno JM, Tornadijo ME (2007) Identification of lactic acid bacteria isolated from Genestoso cheese throughout ripening and study of their antimicrobial activity. Food Contr 18:716–722. doi:10.1016/j.foodcont.2006.03.008

    Article  CAS  Google Scholar 

  • Guerra NP, Bern’ardez PF, M’endez J, Cachaldora P, Castro LP (2007) Production of four potentially probiotic lactic acid bacteria and their evaluation as feed additives for weaned piglets. Anim Feed Sci Technol 134:89–107. doi:10.1016/j.anifeedsci.2006.05.010

    Article  CAS  Google Scholar 

  • Gurira OZ, Buys EM (2005) Characterization and antimicrobial activity of Pediococcus species isolated from South African farm-style cheese. Food Microbiol 22:159–168. doi:10.1016/j.fm.2004.08.001

    Article  CAS  Google Scholar 

  • Hood SK, Zotolla EA (1988) Effect of low pH on the viability of Lactobacillus acidophilus to survive and adhere to human intestinal cells. J Food Sci 53:1514–1516. doi:10.1111/j.1365-2621.1988.tb09312.x

    Article  Google Scholar 

  • Hyronimus B, Marrec CL, Hadj SA, Deschamps A (2000) Acid and bile tolerance of spore-forming lactic acid bacteria. Int J Food Microbiol 61:193–197. doi:10.1016/S0168-1605(00)00366-4

    Article  CAS  Google Scholar 

  • Kailasapathy K (2002) Microencapsulation of probiotic bacteria: technology and potential applications. Curr Issues Intest Microbiol 3:39–48

    CAS  Google Scholar 

  • Kailasapathy K (2006) Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT-Food Sci Technol 39:1221–1227. doi:10.1016/j.lwt.2005.07.013

    Article  CAS  Google Scholar 

  • Kawai Y, Tacokoro K, Konomi R, Itoh K, Saito T, Kitazawa H, Itoh T (1999) A novel method for the detection of protease and the development of extracellular protease in early growth stages of Lactobacillus delbrueckii ssp.bulgaricus. J Dairy Sci 82:481–485

    CAS  Google Scholar 

  • Klaenhammer TR (1995) Genetics of intestinal lactobacilli. Int Dairy J 5:1019–1058. doi:10.1016/0958-6946(95)00044-5

    Article  CAS  Google Scholar 

  • Knarreborg A, Jensen SK, Engberg RM (2003) Pancreatic lipase activity as influenced by unconjugated bile acids and pH, measured in vitro and in vivo. J Nutr Biochem 14:259–265. doi:10.1016/S0955-2863(03)00008-1

    Article  CAS  Google Scholar 

  • Kong S, Davison AJ (1980) The role of interactions between O2, H2, OH, e and O2− in free radical damage to biological systems. Arch Biochem Biophys 204:18–29. doi:10.1016/0003-9861(80)90003-X

    Article  CAS  Google Scholar 

  • Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. Int Dairy J 13:3–13. doi:10.1016/S0958-6946(02)00155-3

    Article  CAS  Google Scholar 

  • Krasaekoopt W, Bhandari B, Deeth H (2004) The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int Dairy J 14:737–743. doi:10.1016/j.idairyj.2004.01.004

    Article  CAS  Google Scholar 

  • Lan PTN, Binh LT, Benno Y (2003) Impact of two probiotic Lactobacillus strains feeding on fecal lactobacilli and weight gains in chicken. J Gen Appl Microbiol 49:29–36. doi:10.2323/jgam.49.29

    Article  CAS  Google Scholar 

  • Lee KY, Heo TR (2000) Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulate gastric juices and bile salt solution. Appl Environ Microbiol 66:869–873. doi:10.1128/AEM.66.2.869-873.2000

    Article  CAS  Google Scholar 

  • Lin WH, Hwang CF, Chen LW, Tsen HY (2006) Viable counts, characteristic evaluation for commercial lactic acid bacteria products. Food Microbiol 23:74–81. doi:10.1016/j.fm.2005.01.013

    Article  CAS  Google Scholar 

  • Lin WH, Yu B, Jang SH, Tsen HY (2007) Different probiotic properties for Lactobacillus fermentum strains isolated from swine and poultry. Anaerobe 13:107–113. doi:10.1016/j.anaerobe.2007.04.006

    Article  CAS  Google Scholar 

  • Lindgren SE, Dobrogosz WJ (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Rev 87:149–163. doi:10.1111/j.1574-6968.1990.tb04885.x

    Article  CAS  Google Scholar 

  • Madureira AR, Pereira CI, Truszkowska K, Gomes AM, Pintado ME, Malcata FX (2005) Survival of probiotic bacteria in a whey cheese vector submitted to environmental conditions prevailing in the gastrointestinal tract. Int Dairy J 15:921–927. doi:10.1016/j.idairyj.2004.08.025

    Article  CAS  Google Scholar 

  • Makras L, Vuyst LD (2006) The in vitro inhibition of Gram-negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids. Int Dairy J 16:1049–1057. doi:10.1016/j.idairyj.2005.09.006

    Article  CAS  Google Scholar 

  • Malaipuang R (2001) Production of probiotic for chicken feed from Thai isolated lactic acid bacteria. Master of Science Degree Thesis. Kasetsart University

  • Mandal S, Puniya AK, Singh K (2006) Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. Int Dairy J 16:1190–1195. doi:10.1016/j.idairyj.2005.10.005

    Article  CAS  Google Scholar 

  • Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B, Tsakalidou E (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J 16:189–199. doi:10.1016/j.idairyj.2005.02.009

    Article  CAS  Google Scholar 

  • Mishra V, Prasad DN (2005) Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int J Food Microbiol 103:109–115. doi:10.1016/j.ijfoodmicro.2004.10.047

    Article  Google Scholar 

  • Mombelli B, Gismondo MR (2000) The use of probiotics in medical practice. Int J Antimicrob Agents 16:531–536. doi:10.1016/S0924-8579(00)00322-8

    Article  CAS  Google Scholar 

  • Moser SA, Savage DC (2001) Bile salt hydrolase activity and resistance to toxicity of conjugated bile salts are unrelated properties in lactobacilli. Appl Environ Microbiol 67:3476–3480. doi:10.1128/AEM.67.8.3476-3480.2001

    Article  CAS  Google Scholar 

  • Muthukumarasamy P, Holley RA (2007) Survival of Escherichia coli O157:H7 in dry fermented sausages containing micro-encapsulated probiotic lactic acid bacteria. Food Microbiol 24:82–88. doi:10.1016/j.fm.2006.03.004

    Article  CAS  Google Scholar 

  • Olkowski AA, Wojnarowicz C, Nain S, Ling B, Alcorn JM, Laarveld B (2008) A study on pathogenesis of sudden death syndrome in broiler chickens. Res Vet Sci 85:131–140. doi:10.1016/j.rvsc.2007.08.006

    Article  CAS  Google Scholar 

  • Santos A, Mauro MS, Sanchez A, Torres JM, System DM (2003) The antimicrobial properties of different strains of Lactobacillus spp. isolated from kefir. Appl Microbiol 26:434–437. doi:10.1078/072320203322497464

    Article  CAS  Google Scholar 

  • Savadogo A, Ouattara CAT, Bassole IHN, Traore AS (2004) Antimicrobial activities of lactic acid bacteria strains isolated from burkina faso fermented milk. Pak J Nutr 3:174–179

    Article  Google Scholar 

  • Shah NP (2000) Probiotic bacteria: selective enumeration and survival in dairy foods. J Dairy Sci 83:894–907

    Article  CAS  Google Scholar 

  • Sheu TY, Marshall RT (1993) Micro-encapsulation of Lactobacilli in calcium alginate gels. J Food Sci 54:557–561. doi:10.1111/j.1365-2621.1993.tb04323.x

    Article  Google Scholar 

  • Sonplang P, Uriyapongson S, Poonsuk K, Mahakhan P (2007) Lactic acid bacteria isolated from native chicken feces. KKU Vet J 17:33–42

    Google Scholar 

  • Strompfová V, Lauková A (2007) In vitro study on bacteriocin production of Enterococci associated with chickens. Anaerobe 13:228–237. doi:10.1016/j.anaerobe.2007.07.002

    Article  CAS  Google Scholar 

  • Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiric P, Kailasapathy K (2000) Encapsulation of probiotic bacteria with alginates-starch and evaluation of survival in simulate gastrointestinal conditions and in yoghurt. Int J Food Microbiol 62:47–55. doi:10.1016/S0168-1605(00)00380-9

    Article  CAS  Google Scholar 

  • Taranto MP, Perez-Martinez G, de Valdez GF (2006) Effect of bile acid on the cell membrane functionality of lactic acid bacteria for oral administration. Res Microbiol 157:720–725. doi:10.1016/j.resmic.2006.04.002

    Article  CAS  Google Scholar 

  • Thongsom M (2004) Lactic acid bacteria in digestive tract of black tiger prawn (Penaeus monodon). Master of Science Degree Thesis. Prince of Songkla University

  • Yu B, Tsen HY (1993) Lactobacillus cells in the rabbit digestive tract and the factors affecting their distribution. J Appl Bacteriol 75:269–275

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Prince of Songkla University through Contract No. AGR5122020037S, Faculty of Agro-Industry and Graduate school, Prince of Songkla University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Maneerat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musikasang, H., Tani, A., H-kittikun, A. et al. Probiotic potential of lactic acid bacteria isolated from chicken gastrointestinal digestive tract. World J Microbiol Biotechnol 25, 1337–1345 (2009). https://doi.org/10.1007/s11274-009-0020-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0020-8

Keywords

Navigation