Skip to main content
Log in

Chromium ions phytoaccumulation by three floating aquatic macrophytes from a nutrient medium

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the present work, the trivalent and hexavalent chromium phytoaccumulation by three living free floating aquatic macrophytes Salvinia auriculata, Pistia stratiotes, and Eicchornia crassipes was investigated in greenhouse. These plants were grown in hydroponic solutions supplied with non-toxic Cr3+ and Cr6+ chromium concentrations, performing six collections of nutrient media and plants in time from a batch system. The total chromium concentrations into Cr-doped hydroponic media and dry roots and aerial parts were assayed, by using the Synchrotron radiation X-ray fluorescence technique. The aquatic plant-based chromium removal data were described by using a nonstructural kinetic model, obtaining different bioaccumulation rate, ranging from 0.015 to 0.837 l mg−1 d−1. The Cr3+ removal efficiency was about 90%, 50%, and 90% for the Ecrassipes, Pstratiotes, and Sauriculata, respectively; while it was rather different for Cr6+ one, with values about 50%, 70%, and 90% for the Ecrassipes, Pstratiotes, and Sauriculata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

C0 :

Initial metal concentration in liquid phase (mg l−1)

CGa :

Internal standard concentration of Gallium (10 mg Ga l−1)

CLP :

Metal concentration in the liquid phase (mg l−1)

Cmod :

Metal concentration obtained by modeling (mg l−1)

CSP :

Metal concentration in solid phase (μg g−1)

E.c:

Aquatic macrophytes Eicchornia crassipes

F:

Objective function

IGa :

Fluorescent intensity of the Gallium internal standard (cps)

IZ :

Fluorescent intensity of the chemical element (cps)

k:

Bioaccumulation rate constant (l d−1 mg−1)

LP:

Liquid phase in metal uptake experiment

m:

Fresh weight of aquatic macrophytes (g)

MDP :

Dry mass before acid digestion process (g)

N:

Number of collections

P.s:

Aquatic macrophytes Pistia stratiotes

q:

Amount of metal binding sites in solid phase (mg g−1) in time

qmax :

Maximum metal uptake in solid phase (mg g−1)

r:

Bioaccumulation kinetic rate (mg g−1d−1)

σ:

Experimental standard deviation of metal concentration in liquid phase (mg l−1)

SK :

Relative-to-gallium sensitivity function for K X-ray series

SL :

Relative-to-gallium sensitivity function for L X-ray series for Z between 42 and 82

S.a:

Aquatic macrophytes Salvinia auriculata

SD:

Standard deviation

SP:

Solid phase relative to dry roots and aerial parts of plants

t:

Time (d)

V0 :

Total volume of the metal-doped nutrient medium (l)

VDP :

Final volume after acid digestion procedure (ml)

Z:

Atomic number of the element

References

  • Acar FN, Malkoc E (2004) The removal of chromium (VI) from aqueous solutions by Fagus orientalis L. Bioresour Technol 94:13–15. doi:10.1016/j.biortech.2003.10.032

    Article  CAS  Google Scholar 

  • Aiginger H, Wobrauschek P (1974) A method for quantitative X-ray fluorescence analysis in the nanogram region. Nucl Instrum Methods 114:157–158. doi:10.1016/0029-554X(74)90352-8

    Article  CAS  Google Scholar 

  • Barros MASD, Silva EA, Arroyo PA, Tavares CRG, Schneider RM, Suszek M et al (2004) Removal of Cr (III) in the fixed bed column and batch reactors using as adsorbent zeolite NaX. Chem Eng Sci 59:5959–5966. doi:10.1016/j.ces.2004.07.040

    Article  CAS  Google Scholar 

  • Basta N (1983) Getting the metal out of spent plating baths. Chem Eng 90:22–23

    Google Scholar 

  • Çetinkaya G, Donmez Z, Aksu Z, Ozturk A, Kutsal T (1999) A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem 34:885–892. doi:10.1016/S0032-9592(99)00005-9

    Article  Google Scholar 

  • Clark RB (1975) Characterization of phosphates in intact maize roots. J Agric Food Chem 23:458–460. doi:10.1021/jf60199a002

    Article  CAS  Google Scholar 

  • Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245. doi:10.1021/es00005a015

    Article  CAS  Google Scholar 

  • Espinoza-Quiñones FR, Zacarkim CE, Palácio SM, Obregón CL, Zenatti DC, Galante RM et al (2005) Removal of heavy metal from polluted river water using aquatic macrophytes Salvinia sp. Braz J Phys 35:744–746

    Google Scholar 

  • Gersberg RM, Elkins BV, Lyon SR, Goldman CR (1986) Role of aquatic plants in wastewater treatment by artificial wetlands. Water Res 20:363–368. doi:10.1016/0043-1354(86)90085-0

    Article  CAS  Google Scholar 

  • Iyer A, Mody K, Jha B (2005) Biosorption of heavy metals by a marine bacterium. Mar Pollut Bull 50:340–343. doi:10.1016/j.marpolbul.2004.11.012

    Article  CAS  Google Scholar 

  • Kefala MI, Zouboulis AI, Matis KA (2005) Biosorption of cadmium ions by Actinomycetes and separation by flotation. Environ Pollut 104:283–293. doi:10.1016/S0269-7491(98)00178-X

    Article  Google Scholar 

  • Kim BM (1981) Treatment of metal containing wastewater with calcium sulfide. AIChE Symp Ser 77:39–48

    CAS  Google Scholar 

  • Liu KJ, Jiang J, Shi X, Gabrys H, Walczak T, Swartz HM (1995) Low-frequency EPR study of chromium (V) formation from chromium (VI) in living plants. Biochem Biophys Res Commun 206:829–834. doi:10.1006/bbrc.1995.1118

    Article  CAS  Google Scholar 

  • Lytle CM, Lytle FW, Yang N, Qian JH, Hansen D, Zayed A et al (1998) Reduction of Cr (VI) to Cr (III) by wetland plants: potential for in situ heavy metal detoxification. Environ Sci Technol 32:3087–3093. doi:10.1021/es980089x

    Article  CAS  Google Scholar 

  • Maine MA, Suñe NL, Lagger SC (2004) Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes. Water Res 38:1494–1501. doi:10.1016/j.watres.2003.12.025

    Article  CAS  Google Scholar 

  • Micera G, Dessi A (1988) Chromium adsorption by plant roots and formation of long-lived Cr (V) species: an ecological hazard? J Inorg Biochem 34:157–166. doi:10.1016/0162-0134(88)85026-8

    Article  CAS  Google Scholar 

  • Nelder JA, Mead RA (1965) Simplex method for function minimization. Comput J 7:308–313

    Google Scholar 

  • Nichols PB, Couch JD, Al-Hamdani SH (2000) Selected physiological responses of Salvinia minima to different chromium concentrations. Aquat Bot 68:313–319

    Article  CAS  Google Scholar 

  • Pérez CA, Radtke M, Sánchez HJ, Tolentino H, Neuenshwander RT, Barg W, Rubio M, Bueno MIS, Raimundo IM, Rohwedder JJR (1998) Synchrotron radiation X-Ray fluorescence at the LNLS: beamline instrumentation and experiments. X-Ray Spectrom 28:320–326

    Article  Google Scholar 

  • Pettersson RP, Olsson M (1998) A nitric acid–hydrogen peroxide digestion method for trace element analysis of milligram amounts of plankton and periphyton by total-reflection X-ray fluorescence spectrometry. J Anal At Spectrom 13:609–613. doi:10.1039/a708575c

    Article  CAS  Google Scholar 

  • Petzold LR (1982) A Description of DASSL: a differential/algebraic equation system solver, STR, SAND 82–8637, Sandia Labs, Livermore

  • Rai UN, Sinha S, Tripathi RD, Chandra P (1995) Wastewater treatability potential of some aquatic macrophytes: removal of heavy metals. Ecol Eng 5:5–12. doi:10.1016/0925-8574(95)00011-7

    Article  Google Scholar 

  • Rakhshaee R, Khosravi M, Ganji MT (2006) Kinetic modelling and thermodynamic study to remove Pb (II), Cd (II), Ni (II) and Zn (II) from aqueous solution using dead and living Azolla filiculoides. J Hazard Mater B134:120–129. doi:10.1016/j.jhazmat.2005.10.042

    Article  CAS  Google Scholar 

  • Reddy KR (1983) Fate of nitrogen and phosphorus in a waste-water retention reservoir containing aquatic macrophytes. J Environ Qual 12:137–141

    Article  CAS  Google Scholar 

  • Römheld V, Marshner H (1983) Mechanism of iron uptake by peanut plants. Plant Physiol 71:949–954

    Article  Google Scholar 

  • Salvador MJ, Moreira S, Dias DA, Zucchi OLAD (2004) Determination of trace elements in Alternanthera brasiliana and Pfaffia glabrata by SRTXRF: application in environmental pollution control. Instrum Sci Technol 32:321–333. doi:10.1081/CI-120030545

    Article  CAS  Google Scholar 

  • Schmitt D, Müeller A, Csögör Z, Frimmel FH, Posten C (2001) The adsorption kinetics of metal ions onto different micro algae and siliceous earth. Water Res 35:779–785. doi:10.1016/S0043-1354(00)00317-1

    Article  CAS  Google Scholar 

  • Schneider IAH, Rubio J (1999) Sorption of heavy metal ions by the nonliving biomass of freshwater macrophytes. Environ Sci Technol 33:2213–2217. doi:10.1021/es981090z

    Article  CAS  Google Scholar 

  • Simabuco SM, Matsumoto E (2000) Synchrotron radiation total reflection for rainwater analysis. Spectrochim Acta B 55:1173–1179. doi:10.1016/S0584-8547(00)00158-0

    Article  Google Scholar 

  • Suñe N, Sánchez G, Caffarattia S, Maine MA (2007) Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Environ Pollut 145:467–473. doi:10.1016/j.envpol.2006.04.016

    Article  CAS  Google Scholar 

  • Van Espen P, Janssens K, Swenters I (1986) AXIL X-ray analysis software. Canberra Packard, Benelux

    Google Scholar 

  • Wang TC, Weissman JC, Ramesh G, Varadarajan R, Benemann JR (1998) Heavy metal binding and removal by Phormidium. Bull Environ Contam Toxicol 60:739–744. doi:10.1007/s001289900688

    Article  CAS  Google Scholar 

  • Yoneda Y, Horiuchi T (1971) Optical flats for use in X-ray spectrochemical micro-analysis. Rev Sci Instrum 42:169–170. doi:10.1063/1.1685282

    Article  CAS  Google Scholar 

  • Zhou P, Huang JC, Li AWF, Wei S (1999) Heavy metal removal from wastewater in fluidized bed reactor. Water Res 33:1918–1924. doi:10.1016/S0043-1354(98)00376-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge The Brazilian Light Synchrotron Laboratory (LNLS) for partial financing of this study through the 3364 and 4652 projects. We also thank Athus School, in Toledo (PR), for proof reading the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Rodolfo Espinoza-Quiñones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinoza-Quiñones, F.R., da Silva, E.A., de Almeida Rizzutto, M. et al. Chromium ions phytoaccumulation by three floating aquatic macrophytes from a nutrient medium. World J Microbiol Biotechnol 24, 3063–3070 (2008). https://doi.org/10.1007/s11274-008-9853-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9853-9

Keywords

Navigation