Skip to main content

Advertisement

Log in

Hexavalent Chromium Reduction with Zero-Valent Iron (ZVI) in Aquatic Systems

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Hexavalent chromium is a heavy metal used in a variety of industrial applications which is highly toxic to humans, animals, plants and microorganisms. Moreover, it is a well-established human carcinogen by the inhalation route of exposure and a possible human carcinogen by the oral route of exposure. Therefore, it should be removed from contaminated waters. Its reduction to trivalent chromium can be beneficial because a more mobile and more toxic chromium species is converted to a less mobile and less toxic form. During the last two decades, there has been important interest in using zero-valent iron (ZVI) as a Cr(VI)-reducing agent. A considerable volume of research has been carried out in order to investigate the mechanism and kinetics of Cr(VI) reduction with ZVI, as well as the influence of various parameters controlling the reduction efficiency. Therefore, the purpose of this review was to provide updated information regarding the developments and innovative approaches in the use of ZVI for the treatment of Cr(VI)-polluted waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdo, M. S. E., & Sedahmed, G. H. (1998). A new technique for removing hexavalent chromium from waste water and energy generation via galvanic reduction with scrap iron. Energy Conversion and Management, 39, 943–951.

    Article  CAS  Google Scholar 

  • Aber, S., Amani-Ghadim, A. R., & Mirzajani, V. (2009). Removal of Cr(VI) from polluted solutions by electrocoagulation: modeling of experimental results using artificial neural network. Journal of Hazardous Materials, 171, 484–490.

    Article  CAS  Google Scholar 

  • Aceves, M. B., Velasquez, R. O., & Vazquez, R. R. (2007). Effects of Cr3+, Cr6+ and tannery sludge on C and N mineralization, and microbial activity in semi-arid soils. Journal of Hazardous Materials, 143, 522–531.

    Article  CAS  Google Scholar 

  • Afridi, H. I., Kazi, T. G., Jamali, M. K., Kazi, G. H., & Shar, G. Q. (2006). The status of trace and toxic elements in biological samples (scalp hair) of skin-disease patients and normal subjects. Turkish Journal of Medical Sciences, 36, 223–230.

    CAS  Google Scholar 

  • Ahmad, W. A., Zakaria, Z. A., Khasim, A. R., Alias, M. A., & Ismail, S. M. H. S. (2010). Pilot-scale removal of chromium from industrial wastewater using the ChromeBac™ system. Bioresource Technology, 101, 4371–4378.

    Article  CAS  Google Scholar 

  • Ahn, M. (2003). Remediation of chromium(VI) in the vadose zone: stoechiometry and kinetics of chromium(VI) reduction by sulfur dioxide. MS thesis, Texas A&M University.

  • Ai, Z., Cheng, Y., Zhang, L., & Qiu, J. (2008). Efficient removal of Cr(VI) from aqueous solution with Fe and Fe2O3 core–shell nanowires. Environmental Science & Technology, 42, 6955–6960.

    Article  CAS  Google Scholar 

  • Alidokht, L., Khataee, A. R., Reyhanitabar, A., & Oustan, S. (2011). Reductive removal of Cr(VI) by starch-stabilized Fe0 nanoparticles in aqueous solution. Desalination, 270, 105–110.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1995). Heavy metals in soils (2nd ed.). London: Blackie Academic & Professional.

    Google Scholar 

  • Alowitz, M. J., & Scherer, M. M. (2002). Kinetics of nitrate, nitrite and Cr(VI) reduction by iron metal. Environmental Science & Technology, 36, 299–306.

    Article  CAS  Google Scholar 

  • Al-Shawi, A. W., & Dahl, R. (1999). Determination of total chromium in phosphate rocks by ion chromatography. Journal of Chromatography A, 850, 137–141.

    Article  CAS  Google Scholar 

  • Anderson, R. A. (1989). Essentiality of chromium in humans. The Science of the Total Environment, 86, 75–81.

    Article  CAS  Google Scholar 

  • Anderson, R. A. (1997). Chromium as an essential nutrient for humans. Regulatory Toxicology and Pharmacology, 26, S35–S41.

    Article  CAS  Google Scholar 

  • Anderson, R. A. (1998). Chromium, glucose intolerance and diabetes. Journal of the American College of Nutrition, 17, 548–555.

    CAS  Google Scholar 

  • Anderson, R. A., Bryden, N. A., & Polansky, M. M. (1985). Serum chromium of human subjects: Effects of chromium supplementation and glucose. The American Journal of Clinical Nutrition, 41, 571–577.

    CAS  Google Scholar 

  • Apostoli, P., Maranelli, G., Duca, P. G., Bavazzano, P., Bortoli, A., Cruciatti, A., et al. (1997). Reference values of urinary chromium in Italy. International Archives of Occupational and Environmental Health, 70, 173–179.

    Article  CAS  Google Scholar 

  • Aroua, M. K., Zuki, F. M., & Sulaiman, N. M. (2007). Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. Journal of Hazardous Materials, 147, 752–758.

    Article  CAS  Google Scholar 

  • Arroyo, M. G., Pérez-Herranz, V., Montanés, M. T., García-Antón, J., & Guinón, J. L. (2009). Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor. Journal of Hazardous Materials, 169, 1127–1133.

    Article  CAS  Google Scholar 

  • Ashton, J. F., Barclay, A. W., Louie, H., Wu, M., & Di, P. (2003). The chromium content of some Australian foods. Food Australia, 55, 201–204.

    Google Scholar 

  • Astrup, T., Stipp, S. L. S., & Christensen, T. H. (2000). Immobilization of chromate from coal fly ash leachate using an attenuating barrier containing zerovalent iron. Environmental Science & Technology, 34, 163–168.

    Article  CAS  Google Scholar 

  • ATSDR (2008). Draft toxicological profile for chromium. Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Public Health Service.

  • ATSDR (2010). http://www.atsdr.cdc.gov/cercla/.

  • Audi, G., Bersillon, O., Blachot, J., & Wapstra, A. H. (2003). The NUBASE evaluation of nuclear and decay properties. Nuclear Physics A, 729, 3–128.

    Article  CAS  Google Scholar 

  • Ayres, R. U. (1997). Metals recycling: Economic and environmental implications. Resources, Conservation and Recycling, 21, 145–173.

    Article  Google Scholar 

  • Baes, C. F., & Mesmer, R. E. (1976). The hydrolysis of cations. New York: Wiley.

    Google Scholar 

  • Bagchi, D., Stohs, S. J., & Downs, B. W. (2002). Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology, 180, 5–22.

    Article  CAS  Google Scholar 

  • Baldea, I., & Nioc, G. (1970). Reaction between chromate and thiosulfate. II. Kinetics of tetrathionate formation. Inorganic Chemistry, 9, 110–114.

    Article  CAS  Google Scholar 

  • Barnes, R. J., van der Gast, C. J., Riba, O., Lehtovirta, L. E., Prosser, J. I., Dobson, P. J., et al. (2010). The impact of zero-valent iron nanoparticles on a river water bacterial community. Journal of Hazardous Materials, 184, 73–80.

    Article  CAS  Google Scholar 

  • Barnhart, J. (1997). Chromium chemistry and implications for environmental fate and transport. Journal of Soil Contamination, 6, 561–568.

    Article  CAS  Google Scholar 

  • Barrie, L. A., & Hoff, R. M. (1985). Five years of air chemistry observations in the Canadian Arctic. Atmospheric Environment, 19, 1995–2010.

    Article  CAS  Google Scholar 

  • Baruah, N. K., Kotoky, P., Bhattacharya, K. G., & Borah, G. C. (1996). Metal speciation in Jhanji River sediments. The Science of the Total Environment, 193, 1–12.

    Article  CAS  Google Scholar 

  • Beaubien, S., Nriagu, J., Blowes, D., & Lawson, G. (1994). Chromium speciation and distribution in the Great Lakes. Environmental Science & Technology, 28, 730–736.

    Article  CAS  Google Scholar 

  • Beni, A., Karosi, R., & Posta, J. (2007). Speciation of hexavalent chromium in waters by liquid–liquid extraction and GFAAS determination. Microchemical Journal, 85, 103–108.

    Article  CAS  Google Scholar 

  • Benjamin, M. M. (2002). Water chemistry. New York: McGraw-Hill.

    Google Scholar 

  • Bennett, T. A., Blowes, D. W., Puls, R. W., Gillham, R. W, Hanton-Fong, C. J., & Ptacek, C. J. (1997). A porous reactive wall for treatment of Cr(VI) and trichloroethylene in groundwater. Proceedings of the 213th ACS National Meeting, April 1997, San Francisco, California, pp. 243–245.

  • Beukes, J. P., Pienaar, J. J., Lachmann, G., & Giesekke, E. W. (1999). The reduction of hexavalent chromium by sulphite in wastewater. Water SA, 25, 363–370.

    CAS  Google Scholar 

  • Beukes, J. P., Pienaar, J. J., & Lachmann, G. (2000). The reduction of hexavalent chromium by sulphite in wastewater—An explanation of the observed reactivity pattern. Water SA, 26, 393–395.

    CAS  Google Scholar 

  • Bever, M. B. (1976a). The recycling of metals—I. Ferrous metals. Conservation and Recycling, 1, 55–69.

    Article  CAS  Google Scholar 

  • Bever, M. B. (1976b). The recycling of metals—II. Nonferrous metals. Conservation and Recycling, 1, 137–147.

    Article  CAS  Google Scholar 

  • Bigg, T., & Judd, S. J. (2000). Zero-valent iron for water treatment. Environmental Technology, 21, 661–670.

    Article  CAS  Google Scholar 

  • Bini, C., Maleci, L., & Romanin, A. (2008). The chromium issue in soils of the leather tannery district in Italy. Journal of Geochemical Exploration, 96, 194–202.

    Article  CAS  Google Scholar 

  • Blowes, D. W., & Ptacek, C. J. (1992). Geochemical remediation of groundwater by permeable reactive walls: Removal of chromate by reaction with iron-bearing solids. Proceeding of the Subsurface Restoration Conference, Third International Conference on Groundwater Quality Research, June 21–24, Dallas, Texas, pp. 214–216.

  • Blowes, D. W., Ptacek, C. J., & Jambor, J. L. (1997). In-situ remediation of chromate contaminated groundwater using permeable reactive walls: Laboratory Studies. Environmental Science & Technology, 31, 3348–3357.

    Article  CAS  Google Scholar 

  • Blowes, D. W., Ptacek, C. J., Bener, S. G., McRae, C. W. T., & Puls, R. W. (1998). Treatment of dissolved metals using permeable reactive barriers. Proceedings of the Groundwater Quality: Remediation and Protection Conference, September, Tubingen, Germany, IAHS Publ. vol. 250, pp. 483–490.

  • Blowes, D. W., Gillham, R. W., Ptacek, C. J., Puls, R. W., Bennett, T. A., O`Hannesin, S. F., Hanton-Fong, C. J., & Bain, J. G. (1999). An in situ permeable reactive barrier for the treatment of hexavalent chromium and trichloroethylene in ground water: Volume 1. Design and installation. EPA/600/R-99/095a.

  • Blowes, D. W., Ptacek, C. J., Benner, S. G., McRae, C. W. T., Bennett, T. A., & Puls, R. W. (2000). Treatment of inorganic contaminants using permeable reactive barriers. Journal of Contaminant Hydrology, 45, 123–137.

    Article  CAS  Google Scholar 

  • Borthiry, G. R., Antholine, W. E., Kalyanaraman, B., Myers, J. M., & Myers, C. R. (2007). Reduction of hexavalent chromium by human cytochrome b5: Generation of hydroxyl radical and superoxide. Free Radical Biology & Medicine, 42, 738–755.

    Article  CAS  Google Scholar 

  • Bowers, A. R., Ortiz, C. A., & Cardozo, R. J. (1986). Iron process for treatment of Cr(VI) wastewaters. Proceedings of the 41st Industrial Waste Conference, May 13–15, Purdue University, West Lafayette, pp. 465–473.

  • Bratakos, M. S., Lazos, E. S., & Bratakos, S. M. (2002). Chromium content of selected Greek foods. The Science of the Total Environment, 290, 47–58.

    Article  CAS  Google Scholar 

  • Brune, D., Aitio, A., Nordberg, G., Vesterberg, O., & Gerhardsson, L. (1993). Normal concentrations of chromium in serum and urine—A TRACY project. Scandinavian Journal of Work, Environmet and Health, 19, 39–44.

    CAS  Google Scholar 

  • Cabrera-Vique, C., & Bouzas, P. R. (2009). Chromium and manganese levels in convenience and fast foods: In vitro study of the dialyzable fraction. Food Chemistry, 117, 757–763.

    Article  CAS  Google Scholar 

  • Caggiano, R., D’Emilio, M., Macchiato, M., & Ragosta, M. (2005). Heavy metals in ryegrass species versus metal concentrations in atmospheric particulate measured in an industrial area of southern Italy. Environmental Monitoring and Assessment, 102, 67–84.

    Article  CAS  Google Scholar 

  • Cantrell, K. J., Kaplan, D. I., & Wietsma, T. W. (1995). Zero-valent iron for the in situ remediation of selected metals in groundwater. Journal of Hazardous Materials, 42, 201–212.

    Article  CAS  Google Scholar 

  • Cao, J., Clasen, P., & Zhang, W.-X. (2006). Nanoporous zero-valent iron. Journal of Material Research, 20, 3238–3243.

    Article  Google Scholar 

  • Carbonaro, R. F. (2004). Sources, sinks, and speciation of chromium(III) (amino)carboxylate complexes in heterogenous aqueous media. PhD disertation, John Hopkins University, Baltimore.

  • Casey, C. E., & Hambidge, K. M. (1984). Chromium in human milk from American mothers. The British Journal of Nutrition, 52, 73–77.

    Article  CAS  Google Scholar 

  • Cengeloglu, Y., Tor, A., Kir, E., & Ersoz, M. (2003). Transport of hexavalent chromium through anion-exchange membranes. Desalination, 154, 239–246.

    Article  CAS  Google Scholar 

  • Cervantes, C., Campos-Garcia, J., Devars, S., & Gutierrez-Corona, F. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiological Reviews, 25, 335–347.

    Article  CAS  Google Scholar 

  • Cespon-Romero, R. M., Yebra-Biurrun, M. C., & Bermejo-Barrera, M. P. (1996). Preconcentration and speciation of chromium by the determination of total chromium and chromium(III) in natural waters by flame atomic absorption spectrometry with a chelating ion-exchange flow injection system. Analytica Chimica Acta, 327, 37–45.

    Article  CAS  Google Scholar 

  • Chang, L.-Y. (2003). Alternative chromium reduction and heavy metal precipitation methods for industrial wastewater. Environmental Progress, 22, 174–182.

    Article  CAS  Google Scholar 

  • Chang, L.-Y. (2005). Chromate reduction in wastewater at different pH levels using thin iron wires—A laboratory study. Environmental Progress, 24, 305–316.

    Article  CAS  Google Scholar 

  • Chen, S.-S., Cheng, C.-Y., Li, C.-W., Chai, P.-H., & Chang, Y.-M. (2007). Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process. Journal of Hazardous Materials, 142, 362–367.

    Article  CAS  Google Scholar 

  • Chen, S.-S., Hsu, B.-C., & Hung, L.-W. (2008). Chromate reduction by waste iron from electroplating wastewater using plug flow reactor. Journal of Hazardous Materials, 152, 1092–1097.

    Article  CAS  Google Scholar 

  • Cheng, C.-J., Lin, T.-H., Chen, C.-P., Juang, K.-W., & Lee, D.-Y. (2009). The effectiveness of ferrous iron and sodium dithionite for decreasing resin-extractable Cr(VI) in Cr(VI)-spiked alkaline soils. Journal of Hazardous Materials, 164, 510–516.

    Article  CAS  Google Scholar 

  • Cheryl, P., & Susan, M. B. (2000). Reflections on hexavalent chromium: Health hazards of an industrial heavyweight. Environmental Health Perspectives, 108, 48–58.

    Google Scholar 

  • Cheung, K. H., & Gua, J.-D. (2007). Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. International Biodeterioration and Biodegradation, 59, 8–15.

    Article  CAS  Google Scholar 

  • Chiha, M., Samar, M. H., & Hamdaoui, O. (2006). Extraction of chromium(VI) from sulphuric acid aqueous solutions by a liquid surfactant membrane (LSM). Desalination, 194, 69–80.

    Article  CAS  Google Scholar 

  • Christensen, J. M., Holst, E., Bonde, J. P., & Knudsen, L. (1993). Determination of chromium in blood and serum: Evaluation of quality control procedures and estimation of reference values in Danish subjects. The Science of the Total Environment, 132, 11–25.

    Article  CAS  Google Scholar 

  • Cieslak-Golonka, M. (1995). Toxic and mutagenic effects of chromium(VI). A review. Polyhedron, 15, 3667–3689.

    Article  Google Scholar 

  • Clifford, D., Subramanian, S., & Sorg, T. J. (1986). Water treatment processes. III. Removing dissolved inorganic contaminants from water. Environmental Science & Technology, 20, 1072–1080.

    Article  CAS  Google Scholar 

  • Cohen, M. D., Kargacin, B., & Klein, C. B. (1993). Mechanisms of chromium carcinogenicity and toxicity. Critical Reviews in Toxicology, 23, 255–281.

    Article  CAS  Google Scholar 

  • Comba, S., & Sethi, R. (2009). Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Research, 43, 3717–3726.

    Article  CAS  Google Scholar 

  • Costa, M. (1997). Toxicity and carcinogenity of Cr(VI) in animal models and humans. Critical Reviews in Toxicology, 27, 431–442.

    Article  CAS  Google Scholar 

  • Costa, M. (2003). Potential hazards of hexavalent chromate in our drinking water. Toxicology and Applied Pharmacology, 188, 1–5.

    Article  CAS  Google Scholar 

  • Cotton, F. A., Wilkinson, G., Murillo, C. A., & Bochmann, M. (1999). Advanced inorganic chemistry. New York: Wiley.

    Google Scholar 

  • Cundy, A. B., Hopkinson, L., & Whitby, R. L. D. (2008). Use of iron-based technologies in contaminated land and groundwater remediation: A review. The Science of the Total Environment, 400, 42–51.

    Article  CAS  Google Scholar 

  • Da Silva, M. L. B., Johnson, R. L., & Alvarez, P. J. J. (2007). Microbial characterization of groundwater undergoing treatment with a permeable reactive iron barrier. Environmental Engineering Science, 24, 1122–1127.

    Article  CAS  Google Scholar 

  • De Souza, R. M., & De Menezes, L. M. (2008). Nickel, chromium and iron levels in the saliva of patients with simulated fixed orthodontic appliances. The Online Angle Orthodontists, 78, 345–350.

    Article  Google Scholar 

  • Demoisson, F., Mullet, M., & Humbert, B. (2005). Pyrite oxidation by hexavalent chromium: Investigation of the chemical processes by monitoring of aqueous metal species. Environmental Science & Technology, 39, 8747–8752.

    Article  CAS  Google Scholar 

  • Demoisson, F., Mullet, M., & Humbert, B. (2007). Investigation of pyrite oxidation by hexavalent chromium: Solution species and surface chemistry. Journal of Colloid and Interface Science, 316, 531–540.

    Article  CAS  Google Scholar 

  • Dermou, E., Velissariou, A., Xenos, D., & Vayenas, D. V. (2005). Biological chromium(VI) reduction using a trickling filter. Journal of Hazardous Materials, B126, 78–85.

    Article  CAS  Google Scholar 

  • Diao, M., & Yao, M. (2009). Use of zero-valent iron nanoparticles in inactivating microbes. Water Research, 43, 5243–5251.

    Article  CAS  Google Scholar 

  • Djoudi, W., Aissani-Benissad, F., & Bourouina-Bacha, S. (2007). Optimization of copper cementation process by iron using central composite design experiments. Chemical Engineering Journal, 133, 1–6.

    Article  CAS  Google Scholar 

  • Donghee, P., Yun, Y.-S., Lim, S.-R., & Park, J. M. (2006). Kinetic analysis and mathematical modeling of Cr(VI) removal in a differential reactor packed with Ecklonia biomass. Journal of Microbiology and Biotechnology, 16, 1720–1727.

    Google Scholar 

  • Dos Santos Coelho, F., Ardisson, J. D., Moura, F. C. C., Lago, R. M., Murad, E., & Fabris, J. D. (2008). Potential application of highly reactive Fe(0)/Fe3O4 composites for the reduction of Cr(VI) environmental contaminants. Chemosphere, 71, 90–96.

    Article  CAS  Google Scholar 

  • Doyle, C. S., Kendelewicz, T., Bostiki, B. C., & Brown, G. E., Jr. (2004). Soft X-ray spectroscopic studies of the reaction of fractured pyrite surfaces with Cr(VI)-containing aqueous solutions. Geochimica et Cosmochimica Acta, 68, 4287–4299.

    Article  CAS  Google Scholar 

  • Dries, J., Bastiaens, L., Springael, D., Kuypers, S., Agathos, S. N., & Diels, L. (2005). Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems. Water Research, 39, 3531–3540.

    Article  CAS  Google Scholar 

  • Dubey, S. P., & Gopal, K. (2007). Adsorption of chromium(VI) on low cost adsorbents derived from agricultural waste material: A comparative study. Journal of Hazardous Materials, 145, 465–470.

    Article  CAS  Google Scholar 

  • Dutta, R., Mohammad, S. S., Chakrabarti, S., Chaudhuri, B., Bhattacharjee, S., & Dutta, B. K. (2010). Reduction of hexavalent chromium in aqueous medium with zerovalent iron. Water Environment Research, 82, 138–146.

    Article  CAS  Google Scholar 

  • Eleftheriadis, K., & Colbeck, I. (2001). Coarse atmospheric aerosol: Size distributions of trace elements. Atmospheric Environment, 35, 5321–5330.

    Article  CAS  Google Scholar 

  • Ellis, A. S., Johnson, T. M., & Bullen, T. D. (2002). Chromium isotopes and the fate of hexavalent chromium in the environment. Science, 295, 2060–2062.

    Article  CAS  Google Scholar 

  • El-Shazly, A. H., Mubarak, A. A., & Konsowa, A. H. (2005). Hexavalent chromium reduction using a fixed bed of scrap bearing iron spheres. Desalination, 185, 307–316.

    Article  CAS  Google Scholar 

  • Erdem, M., & Tumen, F. (2004). Cr(VI) removal from aqueous solution by the ferrite process. Journal of Hazardous Materials, B109, 71–77.

    Article  CAS  Google Scholar 

  • Espinoza-Quinones, F. R., Martin, N., Stutz, G., Tirao, G., Palacio, S. M., Rizzutto, M. A., et al. (2009). Root uptake and reduction of hexavalent chromium by aquatic macrophytes as assessed by high-resolution X-ray emission. Water Research, 43, 4159–4166.

    Article  CAS  Google Scholar 

  • Fantoni, D., Brozzo, G., Canepa, M., Cipolli, F., Marini, L., Ottonello, G., et al. (2002). Natural hexavalent chromium in groundwater interacting with ophiolitic rocks. Environmental Geology, 42, 871–882.

    Article  CAS  Google Scholar 

  • Fendorf, S. E. (1995). Surface reactions of chromium in soil and waters. Geoderma, 67, 55–71.

    Article  CAS  Google Scholar 

  • Fendorf, S. E., & Li, G. (1996). Kinetics of chromate reduction by ferrous iron. Environmental Science & Technology, 30, 1614–1617.

    Article  CAS  Google Scholar 

  • Fendorf, S. E., Wielinga, B., & Hansel, C. (2000). Chromium transformations in natural environments: The role of biological and abiological processes in chromium(VI) reduction. International Geological Review, 42, 691–701.

    Article  Google Scholar 

  • Fernandez-Sanchez, J. M., Sawvel, E. J., & Alvarez, P. J. J. (2004). Effect of Fe0 quantity on the efficiency of integrated microbial-Fe0 treatment processes. Chemosphere, 54, 823–829.

    Article  CAS  Google Scholar 

  • Fiuza, A., Silva, A., Carvalho, G., de la Fuente, A. V., & Delerue-Matos, C. (2010). Heterogeneous kinetics of the reduction of chromium(VI) by elemental iron. Journal of Hazardous Materials, 175, 1042–1047.

    Article  CAS  Google Scholar 

  • Flury, B., Eggenberger, U., & Mader, U. (2009). First results of operating and monitoring an innovative design of a permeable reactive barrier for the remediaton of chromate contaminated groundwater. Journal of Applied Geochemistry, 24, 687–697.

    Article  CAS  Google Scholar 

  • Flury, B., Frommer, J., Eggenberger, U., Mader, U., Nachtegaal, M., & Kretzschmar, R. (2009). Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier. Environmental Science & Technology, 43, 6786–6792.

    Article  CAS  Google Scholar 

  • Franco, D. V., Da Silva, L. M., & Jardim, W. F. (2009a). Reduction of hexavalent chromium in soil and ground water using zero-valent iron under batch and semi-batch conditions. Water, Air, and Soil Pollution, 197, 49–60.

    Article  CAS  Google Scholar 

  • Franco, D. V., Da Silva, L. M., & Jardim, W. F. (2009b). Chemical reduction of hexavalent chromium and its immobilisation under batch conditions using a slurry reactor. Water, Air, and Soil Pollution, 203, 305–315.

    Article  CAS  Google Scholar 

  • FRTR (2002). Tri-Agency Permeable Reactive Barrier Initiative, Evaluation of permeable reactive barrier performance. Prepared for the Federal Remediation Technologies Roundtable.

  • Furukawa, Y., Kim, J.-W., Watkins, J., & Wilkin, R. T. (2002). Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environmental Science & Technology, 36, 5469–5475.

    Article  CAS  Google Scholar 

  • Gallios, G. P., & Vaclavikova, M. (2008). Removal of chromium(VI) from water streams: A thermodynamic study. Environmental Chemistry Letters, 6, 235–240.

    Article  CAS  Google Scholar 

  • Gandhi, S., Oh, B.-T., Schnoor, J. L., & Alvarez, P. J. J. (2002). Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions. Water Research, 36, 1973–1982.

    Article  CAS  Google Scholar 

  • Ganesh, K. S., Baskaran, L., Rajasekaran, S., Sumathi, K., Chidambaram, A. L. A., & Sundaramoorthy, P. (2008). Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants. Colloids and Surfaces B, 63, 159–163.

    Article  CAS  Google Scholar 

  • Garg, U. K., Kaur, M. P., Garg, V. K., & Suda, D. (2007). Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. Journal of Hazardous Materials, 140, 60–68.

    Article  CAS  Google Scholar 

  • Geng, B., Jin, Z., Li, T., & Qi, X. (2009a). Preparation of chitosan-stabilized Fe0 nanoparticles for removal of hexavalent chromium in water. The Science of the Total Environment, 407, 4994–5000.

    Article  CAS  Google Scholar 

  • Geng, B., Jin, Z., Li, T., & Qi, X. (2009b). Kinetics of hexavalent chromium removal from water by chitosan–Fe0 nanoparticles. Chemosphere, 75, 825–830.

    Article  CAS  Google Scholar 

  • Gheju, M. (2005). Chromium and the environment. Timisoara: Politehnica Publishing House.

    Google Scholar 

  • Gheju, M., & Balcu, I. (2010). Hexavalent chromium reduction with scrap iron in continuous-flow system. Part 2: Effect of scrap iron shape and size. Journal of Hazardous Materials, 182, 484–493.

    Article  CAS  Google Scholar 

  • Gheju, M., & Iovi, A. (2006). Kinetics of hexavalent chromium reduction by scrap iron. Journal of Hazardous Materials, B135, 66–73.

    Article  CAS  Google Scholar 

  • Gheju, M., Iovi, A., & Balcu, I. (2008). Hexavalent chromium reduction with scrap iron in continuous-flow system. Part 1: Effect of feed solution pH. Journal of Hazardous Materials, 153, 655–662.

    Article  CAS  Google Scholar 

  • Ghorbel-Abid, I., Galai, K., & Trabelsi-Ayadi, M. (2010). Retention of chromium(III) and cadmium(II) from aqueous solution by illitic clay as a low-cost adsorbent. Desalination, 256, 190–195.

    Article  CAS  Google Scholar 

  • Gillham, R. W., & O’Hannesin, S. F. (1994). Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water, 32, 958–967.

    Article  CAS  Google Scholar 

  • Gillham, R. W., & O'Hannesin, S. F. (1991). Metal-catalysed abiotic degradation of halogenated organic compounds. Ground Water, 29, 752–761.

    Google Scholar 

  • Gode, F., & Pehlivan, E. (2005). Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins. Journal of Hazardous Materials, 119, 175–182.

    Article  CAS  Google Scholar 

  • Gonzalez, A. R., Ndungu, K., & Flegal, A. R. (2005). Natural occurrence of hexavalent chromium in the Aromas Red Sands Aquifer, California. Environmental Science & Technology, 39, 5505–5511.

    Article  CAS  Google Scholar 

  • Gould, J. P. (1982). The kinetics of hexavalent chromium reduction by metallic iron. Water Research, 16, 871–877.

    Article  CAS  Google Scholar 

  • Graham, M. C., Farmer, J. G., Anderson, P., Paterson, E., Hillier, S., Lumsdon, D. G., et al. (2006). Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue. The Science of the Total Environment, 364, 32–44.

    Article  CAS  Google Scholar 

  • Grieger, K. D., Fjordboge, A., Hartmann, N. B., Eriksson, E., Bjerg, P. L., & Baun, A. (2010). Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off? Journal of Contaminant Hydrology, 118, 165–183.

    Article  CAS  Google Scholar 

  • Gu, B., Watson, D. B., Wu, L., Phillips, D. H., White, D. C., & Zhou, J. (2002). Microbological characteristics in a zero-valent iron reactive barrier. Environmental Monitoring and Assessment, 77, 293–309.

    Article  Google Scholar 

  • Guha, S., & Bhargava, P. (2005). Removal of chromium from synthetic plating waste by zero-valent iron and sulfate-reducing bacteria. Water Environment Research, 77, 411–416.

    Article  CAS  Google Scholar 

  • Gui, L., Yang, Y., Jeen, S.-W., Gillham, R. W., & Blowes, D. W. (2009). Reduction of chromate by granular iron in the presence of dissolved CaCO3. Applied Geochemistry, 24, 677–686.

    Article  CAS  Google Scholar 

  • Han, I., Schlautman, M. A., & Batchelor, B. (2000). Removal of hexavalent chromium from groundwater by granular activated carbon. Water Environment Research, 72, 29–39.

    Article  CAS  Google Scholar 

  • Haritonidis, S., & Malea, P. (1995). Seasonal and local variation of Ce, Ni and Co concentrations in Ulva rigida C. Agardh and Entheromorpha linza (Linnaeus) from Thermaikos Gulf, Greece. Environmental Polution, 89, 319–327.

    Article  CAS  Google Scholar 

  • Henderson, A. D., & Demond, A. H. (2007). Long-term performance of zero-valent iron permeable reactive barriers: A critical review. Environmental Engineering Science, 24, 401–424.

    Article  CAS  Google Scholar 

  • Hirata, S., Honda, K., Shikino, O., Maekawa, N., & Aihara, M. (2000). Determination of chromium(III) and total chromium in seawater by on-line column preconcentration inductively coupled plasma mass spectrometry. Spectrochimica Acta B, 55, 1089–1099.

    Article  Google Scholar 

  • Hoch, L. B., Mack, E. J., Hydutsky, B. W., Hershman, J. M., Skluzacek, J. M., & Mallouk, T. E. (2008). Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environmental Science & Technology, 42, 2600–2605.

    Article  CAS  Google Scholar 

  • Hoover, C. R., & Masselli, J. W. (1941). Disposal of waste liquors from chromium plating. Industrial and Engineering Chemistry, 33, 131–134.

    Article  CAS  Google Scholar 

  • Hou, M., Wan, H., Liu, T., Fan, Y., Liu, X., & Wang, X. (2008). The effect of different divalent cations on the reduction of hexavalent chromium by zerovalent iron. Applied Catalysis B, 84, 170–175.

    Article  CAS  Google Scholar 

  • Hsu, L. C., Wang, S. L., Tzou, Y. M., Lin, C. F., & Chen, J. H. (2007). The removal and recovery of Cr(VI) by Li/Al layered double hydroxide (LDH). Journal of Hazardous Materials, 142, 242–249.

    Article  CAS  Google Scholar 

  • Hu, C.-Y., Lo, S.-L., Liou, Y.-H., Hsu, Y.-W., Shih, K., & Lin, C.-J. (2010). Hexavalent chromium removal from near natural water by copper–iron bimetallic particles. Water Research, 44, 3101–3108.

    Article  CAS  Google Scholar 

  • Hua, B., & Deng, B. (2003). Influences of water vapor on Cr(VI) reduction by gaseous hydrogen sulfide. Environmental Science & Technology, 37, 4771–4777.

    Article  CAS  Google Scholar 

  • Huang, S.-H., Peng, B., Yang, Z.-H., Chai, L.-Y., Xu, Y.-Z., & Su, C.-Q. (2009). Spatial distribution of chromium in soils contaminated by chromium-containing slag. Transactions of the Nonferrous Metals Society of China, 19, 756–764.

    Article  CAS  Google Scholar 

  • Hunt, A. E., Allen, K. G. D., & Smith, B. A. (1985). Effect of chromium supplementation on hair chromium concentration and diabetic status. Nutrition Research, 5, 131–140.

    Article  CAS  Google Scholar 

  • IARC (1990). IARC monographs on the evaluation of carcinogenic risks to humans: Chromium, nickel and welding, vol. 49. International Agency for Research on Cancer, World Health Organization, Lyon, France.

  • Icopini, G. A., & Long, D. T. (2002). Speciation of aqueous chromium by use of solid-phase extractions in the field. Environmental Science & Technology, 36, 2994–2999.

    Article  CAS  Google Scholar 

  • Irwin, R. J., Van Mouwerik, M., Stevens, L., Seese, M. D., & Basham, W. (1997). Environmental contaminants encyclopedia. Chromium VI (hexavalent chromium) entry. Fort Collins, Colorado: National Park Service, Water Resources Divisions, Water Operations Branch.

    Google Scholar 

  • Isaacs, H. S., Virtanen, S., Ryan, M. P., Schmuki, P., & Oblonski, L. J. (2002). Incorporation of Cr in the passive film on Fe from chromate solutions. Electrochimica Acta, 47, 3127–3130.

    Article  CAS  Google Scholar 

  • Istok, J. D., Amonette, J. E., Cole, C. R., Fruchter, J. S., Humphrey, M. D., Szecsody, J. E., et al. (1999). In situ redox manipulation by dithionite injection: Intermediate-scale laboratory experiments. Ground Water, 37, 884–889.

    Article  CAS  Google Scholar 

  • Iyengar, G. V. (1989). Nutritional chemistry of chromium. The Science of the Total Environment, 86, 69–74.

    Article  CAS  Google Scholar 

  • Jacobs, J., Hardison, R. L., & Rose, J. V. (2001). In situ remediation of heavy metals using sulfur-based treatment technologies. Hydrovisions, 10, 1–5.

    Google Scholar 

  • Jain, C. K., Singhal, D. C., & Sharma, M. K. (2005). Metal pollution assessment of sediment and water in the River Hindon, India. Environmental Monitoring and Assessment, 105, 193–207.

    Article  CAS  Google Scholar 

  • Jana, M., Rajaram, A., & Rajaram, R. (2009). Chromium picolinate induced apoptosis of lymphocytes and the signaling mechanisms thereof. Toxicology and Applied Pharmacology, 237, 331–344.

    Article  CAS  Google Scholar 

  • Jeen, S.-W., Jambor, J. L., Blowes, D. W., & Gillham, R. W. (2007). Precipitates on granular iron in solutions containing calcium carbonate with trichloroethene and hexavalent chromium. Environmental Science & Technology, 41, 1989–1994.

    Article  CAS  Google Scholar 

  • Jeen, S.-W., Blowes, D. W., & Gillham, R. W. (2008). Performance evaluation of granular iron for removing hexavalent chromium under different geochemical conditions. Journal of Contaminant Hydrology, 95, 76–91.

    Article  CAS  Google Scholar 

  • Junyapoon, S., & Weerapong, S. (2006). Removal of hexavalent chromium from aqueous solutions by scrap iron fillings. KMITL Science and Technology Journal, 6, 1–12.

    Google Scholar 

  • Kamolpornwijit, W., Liang, L., West, O. R., Moline, G. R., & Sullivan, A. B. (2003). Preferential flow path development and its influence on long-term PRB performance: Column study. Journal of Contaminant Hydrology, 66, 161–178.

    Article  CAS  Google Scholar 

  • Kaplan, D. I., & Gilmore, T. J. (2004). Zerovalent iton removal rates of aqueous Cr(VI) measured under flow conditions. Water, Air, and Soil Pollution, 155, 21–33.

    Article  CAS  Google Scholar 

  • Karandikar, D. A. (1991). Processing of cast iron scrap from the diesel engine manufacturing industry by powder metallurgy techniques. Resources, Conservation and Recycling, 5, 61–71.

    Article  Google Scholar 

  • Karn, B., Kuiken, T., & Otto, M. (2009). Nanotechnology and in situ remediation: A review of the benefits and potential risks. Environmental Health Perspectives, 117, 1832–1831.

    Google Scholar 

  • Kieber, R. J., Willey, J. D., & Zvalaren, S. D. (2002). Chromium speciation in rainwater: Temporal variability and atmospheric deposition. Environmental Science & Technology, 36, 5321–5327.

    Article  CAS  Google Scholar 

  • Kiilunen, M., Jarvisalo, J., Maktie, O., & Aitio, A. (1987). Analysis, storage stability and reference values for urinary chromium and nickel. International Archives of Occupational and Environmental Health, 59, 43–50.

    Article  CAS  Google Scholar 

  • Kim, C., Zhou, Q., Deng, B., Thornton, E. C., & Xu, H. (2001). Chromium(VI) reduction by hydrogen sulfide in aqueous media: Stoichiometry and kinetics. Environmental Science & Technology, 35, 2219–2225.

    Article  CAS  Google Scholar 

  • Kim, C., Lan, Y., & Deng, B. (2007). Kinetic study of hexavalent Cr(VI) reduction by hydrogen sulfide through goethite surface catalytic reaction. Geochemical Journal, 41, 397–405.

    Article  CAS  Google Scholar 

  • Kim, R.-Y., Sung, J.-K., Lee, J.-Y., Kim, S.-C., Jang, B.-C., Kim, W.-I., et al. (2010). Chromium distribution in Korean soils: A review. Korean Journal of Soil Science and Fertilizer, 43, 296–303.

    CAS  Google Scholar 

  • Kimbrough, D. E., Cohen, Y., & Winer, A. M. (1999). A critical assessment of chromium in the environment. Critical Reviews in Environmental Science and Technology, 29, 1–46.

    Article  CAS  Google Scholar 

  • Kohn, T., Livi, K. J. T., Roberts, A. L., & Vikesland, P. J. (2005). Longevity of granular iron in groundwater treatment processes: Corrosion product development. Environmental Science & Technology, 39, 2867–2879.

    Article  CAS  Google Scholar 

  • Kotas, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107, 263–283.

    Article  CAS  Google Scholar 

  • Kouba, A., Buric, M., & Kozak, P. (2010). Bioaccumulation and effects of heavy metals in crayfish: A review. Water, Air, and Soil Pollution, 211, 5–16.

    Article  CAS  Google Scholar 

  • Krogh, H., Myhre, L., Hakkinen, T., Tattari, K., Jonsson, A., & Bjorklund, T. (2001). Environmental data for production of reinforcement bars from scrap iron and for production of steel products from iron ore in the Nordic countries. Building and Environment, 36, 109–119.

    Article  Google Scholar 

  • Krzysik, M., Grajeta, H., & Prescha, A. (2008). Chromium content in selected convenience and fast foods in Poland. Food Chemistry, 107, 208–212.

    Article  CAS  Google Scholar 

  • Kumar, A. R., & Riyazuddin, P. (2009). Comparative study of analytical methods for the determination of chromium in groundwater samples containing iron. Microchemistry Journal, 93, 236–241.

    Article  CAS  Google Scholar 

  • Kumpulainen, J., Lehto, J., Koivistoinen, P., Uusitupa, M., & Vuori, E. (1983). Determination of chromium in human milk, serum and urine by electrothermal atomic absorption spectrometry without preliminary ashing. The Science of the Total Environment, 31, 71–80.

    Article  CAS  Google Scholar 

  • Kuo, H.-W., Lai, J.-S., & Lin, T.-I. (1997). Nasal septum lesions and lung function in workers exposed to chromic acid in electroplating factories. International Archives of Occupational and Environmental Health, 70, 272–276.

    Article  CAS  Google Scholar 

  • Lai, K. C. K., & Lo, I. M. (2008). Removal of chromium(VI) by acid-washed zero-valent iron under various groundwater geochemistry conditions. Environmental Science & Technology, 42, 1238–1244.

    Article  CAS  Google Scholar 

  • Lam, M. H.-W., Tjia, A. Y.-W., Chan, C.-C., Chan, W.-P., & Lee, W.-S. (1997). Speciation study of chromium, copper and nickel in coastal estuarine sediments polluted by domestic and industrial effluents. Marine Pollution Bulletin, 34, 949–959.

    Article  CAS  Google Scholar 

  • Lan, Y.-Q., Yang, J.-X., & Deng, B. (2006). Catalysis of dissolved and adsorbed iron in soil suspension for chromium(VI) reduction by sulfide. Pedosphere, 16, 572–578.

    Article  CAS  Google Scholar 

  • Lee, T., Lim, H., Lee, Y., & Park, J. (2003). Use of waste iron metal for removal of Cr(VI) from water. Chemosphere, 53, 479–485.

    Article  CAS  Google Scholar 

  • Lee, H.-J., Chun, B.-S., Kim, W.-C., Chung, M., & Park, J.-W. (2006). Zero valent iron and clay mixtures for removal of trichloroethylene, chromium(VI), and nitrate. Environmental Technology, 27, 299–306.

    Article  CAS  Google Scholar 

  • Lee, C., Kim, J. Y., Lee, W. I., Nelson, K. L., Yoon, J., & Sedlak, D. L. (2008). Bactericidal effect of zero-valent iron nano-scale particles on Escherichia coli. Environmental Science & Technology, 42, 4927–4933.

    Article  CAS  Google Scholar 

  • Lee, J. W., Cha, D. K., Oh, Y. K., Ko, K. B., & Jin, S. H. (2010). Wastewater screening method for evaluating applicability of zero-valent iron to industrial wastewater. Journal of Hazardous Materials, 180, 354–360.

    Article  CAS  Google Scholar 

  • Levina, A., & Lay, P. A. (2008). Chemical properties and toxicity of chromium(III) nutritional supplements. Chemical Research in Toxicology, 21, 563–571.

    Article  CAS  Google Scholar 

  • Li, Z., Jones, H. K., Zhang, P., Bowman, R. S., & Helferich, R. L. (1999). Enhanced reduction of chromate and PCE by pelletized surfactant-modified zeolite/zerovalent iron. Environmental Science & Technology, 33, 4326–4330.

    Article  CAS  Google Scholar 

  • Li, X.-Q., Elliott, D. W., & Zhang, W.-X. (2006). Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Critical Reviews in Solid State and Material Science, 31, 111–122.

    Article  CAS  Google Scholar 

  • Li, Z., Jones, H. K., Zhang, P., & Bowman, R. S. (2007). Chromate transport through columns packed with surfactant-modified zeolite/zero valent iron pellets. Chemosphere, 68, 1861–1866.

    Article  CAS  Google Scholar 

  • Li, X.-Q., Cao, J., & Zhang, W.-X. (2008). Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): A study with high-resolution X-ray photoelectron spectroscopy (HR-XPS). Industrial and Engineering Chemistry Research, 47, 2131–2139.

    Article  CAS  Google Scholar 

  • Lin, C.-J. (2002). The chemical trasformations of chromium in natural waters—A model study. Water, Air, and Soil Pollution, 139, 137–158.

    Article  CAS  Google Scholar 

  • Lin, Y.-T., & Huang, C.-P. (2008). Reduction of chromium(VI) by pyrite in dilute aqueous solutions. Separation and Purification Technology, 63, 191–199.

    Article  CAS  Google Scholar 

  • Lin, C.-C., Wu, M.-L., Yang, C.-C., Ger, J., Tsai, W.-J., & Deng, J.-F. (2009). Acute severe chromium poisoning after dermal exposure to hexavalent chromium. Journal of the Chinese Medical Association, 72, 219–221.

    Article  CAS  Google Scholar 

  • Lin, Y.-H., Tseng, H.-H., Wey, M.-Y., & Lin, M.-D. (2010). Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. The Science of the Total Environment, 408, 2260–2267.

    Article  CAS  Google Scholar 

  • Liu, T., & Lo, I. M. C. (2011). Influences of humic acid, on Cr(VI) removal by zero-valent iron from groundwater with various constituents: Implication for long-term PRB performance. Water, Air, and Soil Pollution, 216, 473–483.

    Article  CAS  Google Scholar 

  • Liu, J., Liu, H., Wang, C., Li, X., Tong, Y., Xuan, X., et al. (2008). Synthesis, characterization and re-activation of a Fe0/Ti system for the reduction of aqueous Cr(VI). Journal of Hazardous Materials, 151, 761–769.

    Article  CAS  Google Scholar 

  • Liu, T., Tsang, D. C. W., & Lo, I. M. C. (2008). Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: Iron dissolution and humic acid adsorption. Environmental Science & Technology, 42, 2092–2098.

    Article  CAS  Google Scholar 

  • Liu, J., Wang, C., Shi, J., Liu, H., & Tong, Y. (2009). Aqueous Cr(VI) reduction by electrodeposited zero-valent iron at neutral pH: Acceleration by organic matters. Journal of Hazardous Materials, 163, 370–375.

    Article  CAS  Google Scholar 

  • Liu, T., Rao, P., Mak, M. S. H., Wang, P., & Lo, I. M. C. (2009). Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate. Water Research, 43, 2540–2548.

    Article  CAS  Google Scholar 

  • Liu, T., Rao, P., & Lo, I. M. C. (2009). Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron. The Science of the Total Environment, 407, 3407–3414.

    Article  CAS  Google Scholar 

  • Liu, T., Zhao, L., Sun, D., & Tan, X. (2010). Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater. Journal of Hazardous Materials, 184, 724–730.

    Article  CAS  Google Scholar 

  • Lo, I. M. C., Lam, C. S. C., & Lai, K. C. K. (2005). Competitive effects of trichloroethylene on Cr(VI) removal by zero-valent iron. Journal of Environmental Engineering, 131, 1598–1606.

    Article  CAS  Google Scholar 

  • Lo, I. M. C., Lam, C. S. C., & Lai, K. C. K. (2006). Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal. Water Research, 40, 595–605.

    Article  CAS  Google Scholar 

  • Ludwig, R. D., Su, C., Lee, T. R., Wilkin, R. T., Acree, S. D., Ross, R. R., et al. (2007). In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulfate and sodium dithionite: A field investigation. Environmental Science & Technology, 41, 5299–5305.

    Article  CAS  Google Scholar 

  • Lugo-Lugo, V., Barrera-Diaz, C., Bilyeu, B., Balderas-Hernandez, P., Urena-Nunez, F., & Sanchez-Mendieta, V. (2010). Cr(VI) reduction in wastewater using a bimetallic galvanic reactor. Journal of Hazardous Materials, 176, 418–425.

    Article  CAS  Google Scholar 

  • Lushchak, O. V., Kubrak, O. I., Torous, I. M., Nazarchuka, T. Y., Storey, K. B., & Lushchak, V. I. (2009). Trivalent chromium induces oxidative stress in goldfish brain. Aquatic Toxicology, 75, 56–62.

    CAS  Google Scholar 

  • Lushchak, O. V., Kubrak, O. I., Lozinsky, O. V., Storey, J. M., Storey, K. B., & Lushchak, V. (2009). Chromium(III) induces oxidative stress in goldfish liver and kidney. Aquatic Toxicology, 93, 45–52.

    Article  CAS  Google Scholar 

  • Mackenzie, P. D., Horney, D. P., & Sivavec, T. M. (1999). Mineral precipitation and porosity losses in granular iron columns. Journal of Hazardous Materials, 68, 1–17.

    Article  CAS  Google Scholar 

  • Mak, M. S. H., Rao, P., & Lo, I. M. C. (2011). Zero-valent iron and iron oxide-coated sand as a combination for removal of co-present chromate and arsenate from groundwater with humic acid. Environmental Pollution, 159, 377–382.

    Article  CAS  Google Scholar 

  • Manning, B. A., Kiser, J. R., Kwon, H., & Kanel, S. R. (2007). Spectroscopic investigation of Cr(III)- and Cr(VI)-treated nanoscale zerovalent iron. Environmental Science & Technology, 41, 586–592.

    Article  CAS  Google Scholar 

  • Marsh, T. L., & McInerney, M. J. (2001). Relationship of hydrogen bioavailability to chromate reduction in aquifer sediments. Applied and Environmental Microbiology, 67, 1517–1521.

    Article  CAS  Google Scholar 

  • Martendal, E., Maltez, H. F., & Carasek, E. (2009). Speciation of Cr(III) and Cr(VI) in environmental samples determined by selective separation and preconcentration on silica gel chemically modified with niobium(V) oxide. Journal of Hazardous Materials, 161, 450–456.

    Article  CAS  Google Scholar 

  • McCafferty, E., Bernett, M. K., & Murday, J. S. (1988). An XPS study of passive film formation on iron in chromate solutions. Corrosion Science, 28, 559–576.

    Article  CAS  Google Scholar 

  • Mehra, R., & Juneja, M. (2005). Fingernails as biological indices of metal exposure. Journal of Biosciences, 30, 253–257.

    Article  CAS  Google Scholar 

  • Meibian, Z., Zhijian, C., Qing, C., Hua, Z., Jianlin, L., & Jiliang, H. (2008). Investigating DNA damage in tannery workers occupationally exposed to trivalent chromium using comet assay. Mutation Research, 654, 45–51.

    Google Scholar 

  • Melitas, N., & Farrell, J. (2002). Understanding chromate reaction kinetics with corroding iron media using Tafel analysis and electrochemical impedance spectroscopy. Environmental Science & Technology, 36, 5476–5482.

    Article  CAS  Google Scholar 

  • Melitas, N., Chufe-Moscoso, O., & Farrell, J. (2001). Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: Corrosion inhibition and passive oxide effects. Environmental Science & Technology, 35, 3948–3953.

    Article  CAS  Google Scholar 

  • Mishra, A. K., & Mohanty, B. (2008). Acute toxicity impacts of hexavalent chromium on behavior and histopathology of gill, kidney and liver of the freshwater fish, Channa punctatus (Bloch). Environmental Toxicology and Pharmacology, 26, 136–141.

    Article  CAS  Google Scholar 

  • Mohamed, A. A., Mubarak, A. T., Marstani, Z. M. H., & Fawy, K. F. (2006). A novel kinetic determination of dissolved chromium, species in natural and industrial waste water. Talanta, 70, 460–467.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pittman, C. U., Jr. (2006). Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials, 137, 762–811.

    Article  CAS  Google Scholar 

  • Mondal, B. C., Das, D., & Das, A. K. (2002). Synthesis and characterization of a new resin functionalized with 2-naphthol-3,6-disulfonic acid and its application for the speciation of chromium in natural water. Talanta, 56, 145–152.

    Article  CAS  Google Scholar 

  • Morrison, J. M., Goldhaber, M. B., Lee, L., Holloway, J. M., Wanty, R. B., Wolf, R. E., et al. (2009). A regional-scale study of chromium and nickel in soils of northern California, USA. Applied Geochemistry, 24, 1500–1511.

    Article  CAS  Google Scholar 

  • Moukarzel, A. (2009). Chromium in parenteral nutrition: Too little or too much? Gastroenterology, 137, S18–S28.

    Article  CAS  Google Scholar 

  • Mueller, N. C., & Nowack, B. (2010). Nano zero valent iron—The solution for water and soil remediation? Report of the ObservatoryNANO.

  • Mullet, M., Boursiquot, S., & Ehrhardt, J.-J. (2004). Removal of hexavalent chromium from solutions by mackinawite, tetragonal FeS. Colloids and Surfaces. A, 244, 77–85.

    Article  CAS  Google Scholar 

  • Muthukrishnan, M., & Guha, B. K. (2008). Effect of pH on rejection of hexavalent chromium by nanofiltration. Desalination, 219, 171–178.

    Article  CAS  Google Scholar 

  • Niu, S.-F., Liu, Y., Xu, X.-H., & Lou, Z.-H. (2005). Removal of hexavalent chromium from aqueous solution by iron nanoparticles. Journal of Zhejiang Univerity SCIENCE, 6B, 1022–1027.

    Article  CAS  Google Scholar 

  • Noubactep, C. (2007). Processes of contaminant removal in “Fe0–H2O” systems revisited: The importance of co-precipitation. Open Environment Journal, 1, 9–13.

    Article  CAS  Google Scholar 

  • Noubactep, C. (2009a). On the operating mode of bimetallic systems for environmental remediation. Journal of Hazardous Materials, 164, 394–395.

    Article  CAS  Google Scholar 

  • Noubactep, C. (2009b). An analysis of the evolution of reactive species in Fe0/H2O systems. Journal of Hazardous Materials, 168, 1626–1631.

    Article  CAS  Google Scholar 

  • Noubactep, C. (2010a). Characterizing the reactivity of metallic iron in Fe0/EDTA/H2O systems with column experiments. Journal of Hazardous Materials, 162, 656–661.

    CAS  Google Scholar 

  • Noubactep, C. (2010b). Elemental metalls for environmental remediation: Learning from cementation process. Journal of Hazardous Materials, 181, 1170–1174.

    Article  CAS  Google Scholar 

  • Noubactep, C. (2010c). The fundamental mechanism of aqueous contaminant removal by metallic iron. Water SA, 36, 663–670.

    CAS  Google Scholar 

  • Noubactep, C. (2010d). Metallic iron for safe drinking water worldwide. Chemical Engineering Journal, 165, 740–749.

    Article  CAS  Google Scholar 

  • Noubactep, C., & Care, S. (2010a). On nanoscale metallic iron for groundwater remediation. Journal of Hazardous Materials, 182, 923–927.

    Article  CAS  Google Scholar 

  • Noubactep, C., & Care, C. (2010b). Dimensioning metallic iron beds for efficient contaminant removal. Chemical Engineering Journal, 163, 454–460.

    Article  CAS  Google Scholar 

  • Noubactep, C., & Schoner, A. (2009). Fe0-based alloys for environmental remediation: Thinking outside the box. Journal of Hazardous Materials, 165, 1210–1214.

    Article  CAS  Google Scholar 

  • Noubactep, C., & Schoner, A. (2010). Metallic iron for environmental remediation: Learning from electrocoagulation. Journal of Hazardous Materials, 175, 1075–1080.

    Article  CAS  Google Scholar 

  • Noubactep, C., Licha, T., Scott, T. B., Fall, M., & Sauter, M. (2009). Exploring the influence of operational parameters on the reactivity of elemental iron materials. Journal of Hazardous Materials, 172, 943–951.

    Article  CAS  Google Scholar 

  • Nowak, B., & Kozlowski, H. (1998). Heavy metals in human hair and teeth. The correlation with metal concentration in the environment. Biological Trace Element Research, 62, 213–228.

    Article  CAS  Google Scholar 

  • NRC. (1989). Recommended dietary allowances, National Research Council (10th ed.). Washington: National Academy of Sciences.

    Google Scholar 

  • Nudler, S. I., Quinteros, F. A., Miler, E. A., Cabilla, J. P., Ronchetti, S. A., & Duvilanski, B. H. (2009). Chromium VI administration induces oxidative stress in hypothalamus and anterior pituitary gland from male rats. Toxicology Letters, 185, 187–192.

    Article  CAS  Google Scholar 

  • Odziemkowski, M. S., & Simpraga, R. P. (2004). Distribution of oxides on iron materials used for remediation of organic groundwater contaminants: Implication for hydrogen evolution reactions. Canadian Journal of Chemistry, 82, 1–12.

    Article  Google Scholar 

  • Odziemkowski, M. S., Schuhmacher, T. T., Gillham, R. W., & Reardon, E. J. (1998). Mechanism of oxide film formation on iron in simulating groundwater solutions: Raman spectroscopic studies. Corrosion Science, 40, 371–389.

    Article  CAS  Google Scholar 

  • Oh, B.-T., Lee, J.-Y., & Yoon, J. (2007a). Removal of contaminants in leachate from landfill by waste steel scrap and converter slag. Environmental Geochemistry and Health, 29, 331–336.

    Article  CAS  Google Scholar 

  • Oh, Y. J., Song, H., Shin, W. S., Choi, S. J., & Kim, Y.-H. (2007b). Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron. Chemosphere, 66, 858–865.

    Article  CAS  Google Scholar 

  • O'Hannesin, S. F., & Gillham, R. W. (1993). In situ degradation of halogenated organics by permeable reaction wall. Ground Water Currents, EPA/542/N-93/003.

  • Okumura, A., Kitani, M., Toyomi, Y., & Okazaki, N. (1980). The kinetics of oxygen-exchange reaction between chromate ions and water. Bulletin Chemical Society of Japan, 53, 3143–3148.

    Article  CAS  Google Scholar 

  • Owlad, M., Aroua, M. K., Daud, W. A. W., & Baroutian, S. (2009). Removal of hexavalent chromium-contaminated water and wastewater: A review. Water, Air, and Soil Pollution, 200, 59–77.

    Article  CAS  Google Scholar 

  • Ozer, A., Altundogan, H. S., Erdem, M., & Tumen, F. (1997). A study on the Cr(VI) removal from aqueous soluţions by steel wool. Environmental Pollution, 97, 107–112.

    Article  CAS  Google Scholar 

  • Palmer, C. D., & Puls, R. W. (1994). Natural attenuation of hexavalent chromium in groundwater and soils. Office of Research and Development, USEPA/540/5-94/505.

  • Palmer, C. D., & Wittbrodt, P. R. (1991). Processes affecting the remediation of chromium-contaminated sites. Environmental Health Perspectives, 92, 25–40.

    Article  CAS  Google Scholar 

  • Parks, J. L., McNeill, L., Frey, M., Eaton, A. D., Haghani, A., Ramirez, L., et al. (2004). Determination of total chromium in environmental water samples. Water Research, 38, 2827–2838.

    Article  CAS  Google Scholar 

  • Patterson, R. R., Fendorf, S., & Fendorf, M. (1997). Reduction of hexavalent chromium by amorphous iron sulfide. Environmental Science & Technology, 31, 2039–2044.

    Article  CAS  Google Scholar 

  • Pechova, A., & Pavlata, L. (2007). Chromium as an essential nutrient: A review. Veterinární Medicína, 52, 1–18.

    CAS  Google Scholar 

  • Perez-Candela, M., Martin-Martinez, J. M., & Torregrosa-Macia, R. (1995). Chromium(VI) removal with activated carbons. Water Research, 29, 2174–2180.

    Article  CAS  Google Scholar 

  • Pettine, M., & Millero, F. J. (1990). Chromium speciation in seawater: The probable role of hydrogen peroxide. Limnology and Oceanography, 35, 730–736.

    Article  CAS  Google Scholar 

  • Pettine, M., Barra, I., Campanella, L., & Millero, F. J. (1998). Effect of metals on the reduction of chromium(VI) with hydrogen sulfide. Water Research, 32, 2807–2813.

    Article  CAS  Google Scholar 

  • Pettine, M., D’Ottone, L., Campanella, L., Millero, F. J., & Passino, R. (1998). The reduction of chromium(VI) by iron(II) in aqueous solutions. Geochimica et Cosmochimica Acta, 62, 1509–1519.

    Article  CAS  Google Scholar 

  • Pettine, M., Tonnina, D., & Millero, F. J. (2006). Chromium(VI) reduction by sulphur(IV) in aqueous solutions. Marine Chemistry, 99, 31–41.

    Article  CAS  Google Scholar 

  • Phenrat, T., Saleh, N., Sirk, K., Kim, H.-J., Tilton, R. D., & Lowry, G. V. (2008). Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: Adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research, 10, 795–814.

    Article  CAS  Google Scholar 

  • Phillips, D. H., Gu, B., Watson, D. B., Roh, Y., Liang, L., & Lee, S. Y. (2000). Performance evaluation of a zerovalent iron reactive barrier: Mineralogical consequences. Environmental Science & Technology, 34, 4169–4176.

    Article  CAS  Google Scholar 

  • Ponder, S. M., Darab, J. G., & Mallouk, T. E. (2000). Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology, 34, 2564–2569.

    Article  CAS  Google Scholar 

  • Powell, R. M., & Puls, R. W. (1997). Proton generation by dissolution of intrinsic or augmented aluminosilicate minerals for in situ contaminant remediation by zero-valence-state iron. Environmental Science & Technology, 31, 2244–2251.

    Article  CAS  Google Scholar 

  • Powell, R. M., Puls, R. W., Hightower, S. K., & Sabatini, D. A. (1995). Coupled iron corrosion and chromate reduction: Mechanisms for subsurface remediation. Environmental Science & Technology, 29, 1913–1922.

    Article  CAS  Google Scholar 

  • Powell, R. M., Puls, R. W., Blowes, D. W., Gillham, R. W., Schultz, D., Sivavec, T., Vogan, J. L., Powell, P.D., & Landis, R. (1998). Permeable reactive barrier technologies for contaminant remediation. U.S. EPA/600/R-98/125.

  • Pratt, A. R., Blowes, D. W., & Ptacek, C. J. (1997). Products of chromate reduction on proposed subsurface remediation material. Environmental Science & Technology, 31, 2492–2498.

    Article  CAS  Google Scholar 

  • Preetha, B., & Viruthagiri, T. (2007). Batch and continuous biosorption of chromium(VI) by Rhizopus arrhizus. Separation and Purification Technology, 57, 126–133.

    Article  CAS  Google Scholar 

  • Puls, R. W., Powell, R. M., & Paul, C. J. (1995). In situ remediation of ground water contaminated with chromate and chlorinated solvents using zero-valent iron: A field study. 209th ACS National Meeting, April 2–7, Anaheim, California.

  • Puls, R. W., Paul, C. J., & Powell, R. M. (1996). Remediation of chromate-contaminated groundwater using zero-valent iron: Field test at USCG Support Center, Elizabeth City, North Carolina. PB-97-122915/X.

  • Puls, R. W., Blowes, D. W., & Gillham, R. W. (1999). Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina. Journal of Hazardous Materials, 68, 109–124.

    Article  CAS  Google Scholar 

  • Puls, R. W., Paul, C. J., & Powell, R. M. (1999). The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: A field test. Applied Geochemistry, 14, 989–1000.

    Article  CAS  Google Scholar 

  • Qian, H., Wu, Y., Liu, Y., & Xu, X. (2008). Kinetics of hexavalent chromium reduction by iron metal. Frontiers of Environmental Science & Engineering in China, 2, 51–56.

    Article  Google Scholar 

  • Quilntana, M., Curutchet, G., & Donati, E. (2001). Factors affecting chromium(VI) reduction by Thiobacillus ferrooxidans. Biochemical Engineering Journal, 9, 11–15.

    Article  Google Scholar 

  • Ragosta, M., Caggiano, R., D’Emilio, M., & Macchiato, M. (2002). Source origin and parameters influencing levels of heavy metals in TSP, in an industrial background area of southern Italy. Atmospheric Environment, 36, 3071–3087.

    Article  CAS  Google Scholar 

  • Rai, D., Sass, B. M., & Moore, D. A. (1987). Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorganic Chemistry, 26, 345–349.

    Article  CAS  Google Scholar 

  • Rai, D., Eary, L. E., & Zacara, L. M. (1989). Environmental chemistry of chromium. The Science of the Total Environment, 86, 15–23.

    Article  CAS  Google Scholar 

  • Raithel, H. J., & Schaller, K. H. (1990). Normal values for chromium (Cr) and nickel (Ni) in human pulmonary tissue. Fresenius Journal of Analitical Chemistry, 338, 534–537.

    Article  CAS  Google Scholar 

  • Raithel, H. J., Schaller, K. H., Reith, A., Svenes, K. B., & Valentine, H. (1988). Investigations on the quantitative determination of nickel and chromium in human lung tissue. International Archives of Occupational and Environmental Health, 60, 55–66.

    Article  CAS  Google Scholar 

  • Raithel, H. J., Schaller, K. H., Kraus, T., & Lehnert, G. (1993). Biomonitoring of nickel and chromium in human pulmonary tissue. International Archives of Occupational and Environmental Health, 65, S197–S200.

    Article  CAS  Google Scholar 

  • Ramakrishnan, P. (1983). Iron powder from iron scrap. Conservation and Recycling, 6, 49–54.

    Article  CAS  Google Scholar 

  • Ramessur, R. T., & Ramjeawon, T. (2002). Determination of lead, chromium and zinc in sediments from an urbanized river in Mauritius. Environment International, 28, 315–324.

    Article  CAS  Google Scholar 

  • Reardon, E. J. (1995). Anaerobic corrosion of granular iron: Measurement and interpretation of hydrogen evolution rates. Environmental Science & Technology, 29, 2936–2945.

    Article  CAS  Google Scholar 

  • Reardon, E. J. (2005). Zerovalent irons: Styles of corrosion and inorganic control on hydrogen pressure buildup. Environmental Science & Technology, 39, 7311–7317.

    Article  CAS  Google Scholar 

  • Richard, F. C., & Bourg, A. C. M. (1991). Aqueous geochemistry of chromium: A review. Water Research, 25, 807–816.

    Article  CAS  Google Scholar 

  • Richardson, J. P., & Nicklow, J. W. (2002). In situ permeable reactive barriers for groundwater contamination. Soil and Sediment Contamination, 11, 241–268.

    Article  CAS  Google Scholar 

  • Ritter, K., Odziemkowski, M. S., & Gillham, R. W. (2002). An in situ study of the role of surface films on granular iron in the permeable iron wall technology. Journal of Contaminant Hydrology, 55, 87–111.

    Article  CAS  Google Scholar 

  • Rivero-Huguet, M., & Marshall, W. D. (2009a). Influence of various organic molecules on the reduction of hexavalent chromium mediated by zero-valent iron. Chemosphere, 76, 1240–1248.

    Article  CAS  Google Scholar 

  • Rivero-Huguet, M., & Marshall, W. D. (2009b). Reduction of hexavalent chromium mediated by micro- and nano-sized mixed metallic particles. Journal of Hazardous Materials, 169, 1081–1087.

    Article  CAS  Google Scholar 

  • Robertson, F. N. (1975). Hexavalent chromium in the groundwater in Paradise Valley, Arizona. Ground Water, 13, 516–527.

    Article  CAS  Google Scholar 

  • Robles-Camacho, J., & Armienta, M. A. (2000). Natural chromium contamination of groundwater at Leon Valley, Mexico. Journal of Geochemical Exploration, 68, 167–181.

    Article  CAS  Google Scholar 

  • Sabatini, D. A., Knox, R. C., Tucker, E. E., & Puls, R. W. (1997). Innovative measures for subsurface chromium remediation: Source zone, concentrated plume, and dilute plume. Environmental research brief, EPA/600/S-97/005.

  • Salazar, E., Ortiz, M. I., Urtiga, A. M., & Irabien, J. A. (1992). Equilibrim and kinetics of Cr(VI) extraction with Aliquat 336. Industrial and Engineering Chemistry Research, 31, 1516–1522.

    Article  CAS  Google Scholar 

  • Salem, D. M. S. A., & Drweesh, M. A. (2006). Removal of Cr6+ ions from wastewater in presence of quaternary ammonium salts. Egyptian Journal of Aquatic Research, 32, 1–11.

    Google Scholar 

  • Saygi, K. O., Tuzen, M., Soylak, M., & Elci, L. (2008). Chromium speciation by solid phase extraction on Dowex M 4195 chelating resin and determination by atomic absorption spectrometry. Journal of Hazardous Materials, 153, 1009–1014.

    Article  CAS  Google Scholar 

  • Scherer, M. M. S., Richter, S., Valentine, R. L., & Alvarez, P. J. J. (2000). Chemistry and microbiology of reactive barriers for in situ groundwater cleanup. Critical Reviews in Environmental Science and Technology, 30, 363–411.

    Article  CAS  Google Scholar 

  • Schlautman, M. A., & Han, I. (2001). Effects of pH and dissolved oxigen on the reduction of hexavalent chromium by dissolved ferrous iron in poorly buffered aqueous systems. Water Research, 35, 1534–1546.

    Article  CAS  Google Scholar 

  • Scott, T. B., Popescu, I. C., Crane, R. A., & Noubactep, C. (2011). Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants. Journal of Hazardous Materials, 186, 280–287.

    Article  CAS  Google Scholar 

  • Seaman, J. C., Berttsch, P. M., & Schwallie, L. (1999). In situ Cr(VI) reduction within coarse textured, oxide-coated soil and aquifer systems using Fe(II) solutions. Environmental Science & Technology, 33, 938–944.

    Article  CAS  Google Scholar 

  • Sedlak, D. L., & Chan, P. G. (1997). Reduction of hexavalent chromium by ferrous iron. Geochimica et Cosmochimica Acta, 61, 2185–2192.

    Article  CAS  Google Scholar 

  • Seigneur, C., & Constantinou, E. (1995). Chemical kinetic mechanism for atmospheric chromium. Environmental Science & Technology, 29, 222–231.

    Article  CAS  Google Scholar 

  • Senesi, G. S., Dell’Aglio, M., Gaudiuso, R., De Giacomo, A., Zaccone, C., De Pascale, O., et al. (2009). Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium. Environmental Research, 109, 413–420.

    Article  CAS  Google Scholar 

  • Sengupta, A. K., & Clifford, D. (1986). Important process variables in chromate ion exchange. Environmental Science and Technnology, 20, 149–155.

    Article  CAS  Google Scholar 

  • Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environmental International, 31, 739–753.

    Article  CAS  Google Scholar 

  • Shelp, G. S., Chesworth, W., & Spiers, G. (1995). The amelioration of acid mine drainage by an in situ electrochemical method—I. Employing scrap iron as the sacrificial anode. Applied Geochemistry, 10, 705–713.

    Article  CAS  Google Scholar 

  • Shi, T., Wang, Z., Liu, Y., Jia, S., & Changming, D. (2009). Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins. Journal of Hazardous Materials, 161, 900–906.

    Article  CAS  Google Scholar 

  • Shi, L., Zhang, X., & Chen, Z. (2011). Removal of chromium(VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research, 45, 886–892.

    Article  CAS  Google Scholar 

  • Shrivastava, R., Upreti, R. K., Seth, P. K., & Chaturvedi, U. C. (2002). Effects of chromium on the immune system. FEMS Immunology and Medical Microbiology, 34, 1–7.

    Article  CAS  Google Scholar 

  • Shupack, S. I. (1991). The chemistry of chromium and some resulting analytical problems. Environmental Health Perspectives, 92, 7–11.

    Article  CAS  Google Scholar 

  • Sibley, S. F., & Butterman, W. C. (1995). Metals recycling in the United States. Resources, Conservation and Recycling, 15, 259–267.

    Article  Google Scholar 

  • Siegel, S. K., & Clifford, D. A. (1988). Removal of chromium from ion exchange regenerant solution. US EPA, Water Engineering Laboratory, EPA/600/S2-88/007.

  • Singh, D. K., Bharadwaj, R. K., Srivastava, B., & Sahu, A. (2002). Extraction of hexavalent chromium from aqueous solution by emulsion liquid membrane. Journal of Scientific and Industrial Research, 61, 538–542.

    CAS  Google Scholar 

  • Singh, K. P., Singh, A. K., Gupta, S., & Sinha, S. (2011). Optimization of Cr(VI) reduction by zero-valent bimetallic nanoparticles using the response surface modeling approach. Desalination, 270, 275–284.

    Article  CAS  Google Scholar 

  • Sohair, I. A.-E., Hanan, S. I., & Enas, A.-T. (2008). Heavy metal removal and cyanide destruction in the metal plating industry: An integrated approach from Egypt. The Environmentalist, 28, 223–229.

    Article  Google Scholar 

  • Song, D.-I., Kim, Y. H., & Shin, W. S. (2005). A simple mathematical analysis on the effect of sand in Cr(VI) reduction using zero valent iron. Korean Journal of Chemical Engineering, 22, 67–69.

    Article  CAS  Google Scholar 

  • Stasinakis, A. S., Thomaidis, N. S., Mamais, D., Papanikolaou, E. C., Tsakon, A., & Lekkas, T. D. (2003). Effects of chromium(VI) addition on the activated sludge process. Water Research, 37, 2140–2148.

    Article  CAS  Google Scholar 

  • Stern, A. H. (2010). A quantitative assessment of the carcinogenicity of hexavalent chromium by the oral route and its relevance to human exposure. Environmental Research, 110, 798–807.

    Article  CAS  Google Scholar 

  • Stout, M. D., Herbert, R. A., Kissling, G. E., Collins, B. J., Travlos, G. S., Witt, K. L., et al. (2009). Hexavalent chromium is carcinogenic to F344/N rats and B6C3F1 mice after chronic oral exposure. Environmental Health Perspectives, 117, 716–722.

    CAS  Google Scholar 

  • Stumm, W. (1990). Aquatic chemical kinetics. Chichester: Wiley.

    Google Scholar 

  • Su, C., & Ludwig, R. D. (2005). Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite. Environmental Science & Technology, 39, 6208–6216.

    Article  CAS  Google Scholar 

  • Sukumar, A., & Subramanian, R. (2003). Elements in the hair of non-mining workers of a lignite open mine in Neyveli. Industrial Health, 41, 63–68.

    Article  CAS  Google Scholar 

  • Sun, J., & O’Keefe, T. J. (2002). An evaluation of steel scrap as a reducing agent in the galvanic stripping of iron from D2EHPA. Minerals Engineering, 15, 177–185.

    Article  CAS  Google Scholar 

  • Sun, Y.-P., Li, X.-Q., Cao, J., Zhang, W.-X., & Wang, H. P. (2006). Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120, 47–56.

    Article  CAS  Google Scholar 

  • Sun, Y.-P., Li, X.-Q., Zhang, W.-X., & Wang, H. P. (2007). A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids and Surfaces A, 308, 60–66.

    Article  CAS  Google Scholar 

  • Sunderman, F. W., Jr., Hopfer, S. M., Swift, T., Rezuke, W. N., Ziebka, L., Highman, P., et al. (1989). Cobalt, chromium and nickel concentrations in body fluids of patients with porous-coated knee or hip prostheses. Journal of Orthopaedic Research, 7, 307–315.

    Article  CAS  Google Scholar 

  • Szalinska, E., Dominik, J., Vignati, D. A. L., Bobrowski, A., & Bas, B. (2010). Seasonal transport pattern of chromium(III and VI) in a stream receiving wastewater from tanneries. Applied Geochemistry, 25, 116–122.

    Article  CAS  Google Scholar 

  • Takagi, Y., Matsuda, S., & Imai, S. (1986). Trace elements in human hair: An international comparison. Bulletin of Environmental Contamination and Toxicolology, 36, 793–800.

    Article  CAS  Google Scholar 

  • Takagi, Y., Matsuda, S., & Imai, S. (1988). Survey of trace elements in human nail: An international comparison. Bulletin of Environmental Contamination and Toxicolology, 41, 690–695.

    Article  CAS  Google Scholar 

  • Tervonen, T., Linkov, I., Figueira, J. R., Steevens, J., Chappell, M., & Merad, M. (2009). Risk-based classification system of nanomaterials. Journal of Nanoparticle Research, 11, 757–766.

    Article  CAS  Google Scholar 

  • Thornton, E. C., & Amonette, J. E. (1999). Hydrogen sulfide gas treatment of Cr(VI)-contaminated sediment samples from a plating-waste disposal site—Implications for in-situ remediation. Environmental Science & Technology, 33, 4095–4101.

    Article  CAS  Google Scholar 

  • Tielong, L., Bing, G., Na, Z., Zhaohui, J., & Xinhua, Q. (2009). Hexavalent chromium removal from water using chitosan–Fe0 nanoparticles. Journal of Physics: Conference Series, 188, 1–8.

    Article  CAS  Google Scholar 

  • Tiraferri, A., & Sethi, R. (2009). Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. Journal of Nanoparticle Research, 11, 635–645.

    Article  CAS  Google Scholar 

  • Torra, M., Rodamilans, M., Corbella, J., Ferrer, R., & Mazzara, R. (1999). Blood chromium determination in assessing reference values in an unexposed Mediterranean population. Biological Trace Element Research, 70, 183–189.

    Article  CAS  Google Scholar 

  • Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1, 44–48.

    Article  Google Scholar 

  • Tratnyek, P. G., Scherer, M. M., Johnson, T. L., & Matheson, L. J. (2003). Permeable reactive barriers of iron and other zero-valent metals. In M. A. Tarr (Ed.), Chemical degradation methods for wastes and pollutants. Environmental and industrial applications (pp. 371–421). New York: Marcel Dekker.

    Google Scholar 

  • USDA (2001). U.S. Department of the Army, Engineering and design precipitation/coagulation/flocculation. Manual No. 1110-1-4012, Army Corps of Engineers, Washington.

  • Vazquez-Morillas, A., Vaca-Mier, M., & Alvarez, P. J. (2006). Biological activation of hydrous ferric oxide for reduction of hexavalent chromium in the presence of different anions. European Journal of Soil Biology, 42, 99–106.

    Article  CAS  Google Scholar 

  • Vega, A., Fiuza, A., & Guimaraes, F. (2010). Insight into the phenomenology of the Cr(VI) reduction by metallic iron using an electron probe microanalyzer. Langmuir, 26, 11980–11986.

    Article  CAS  Google Scholar 

  • Veillon, C. (1989). Analytical chemistry of chromium. The Science of the Total Environment, 86, 65–68.

    Article  CAS  Google Scholar 

  • Velma, V., & Tchounwou, P. B. (2010). Chromium-induced biochemical, genotoxic and histopathologic effects in liver, and kidney of goldfish, Carassius auratus. Mutation Research, 698, 43–51.

    CAS  Google Scholar 

  • Vignati, D. A. L., Dominik, J., Beye, M. L., Pettine, M., & Ferrari, B. J. D. (2010). Chromium(VI) is more toxic than chromium(III) to freshwater algae: A paradigm to revise? Ecotoxicology and Environmental Safety, 73, 743–749.

    Article  CAS  Google Scholar 

  • Vinod, V. T. P., Sashidhar, R. B., & Sreedhar, B. (2010). Biosorption of nickel and total chromium from aqueous solution by gum kondagogu (Cochlospermum gossypium): A carbohydrate biopolymer. Journal of Hazardous Materials, 178, 851–860.

    Article  CAS  Google Scholar 

  • Wang, X. S., Li, Z. Z., & Tao, S. R. (2009). Removal of chromium(VI) from aqueous solution using walnut hull. Journal of Environmental Management, 90, 721–729.

    Article  CAS  Google Scholar 

  • Wang, Q., Cissoko, N., Zhou, M., & Xu, X. (2011). Effects and mechanism of humic acid on chromium(VI) removal by zero-valent iron (Fe0) nanoparticles. Physics and Chemistry of the Earth. doi:10.1016/j.pce.2010.03.020.

  • Wang, Q., Qian, H., Yang, Y., Zhang, Z., Naman, C., & Xu, X. (2010). Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles. Journal of Contaminant Hydrology, 114, 35–42.

    Article  CAS  Google Scholar 

  • Wazne, M., Jagupilla, S. C., Moon, D. H., Jagupilla, S. C., Christodoulatos, C., & Kim, M. G. (2007). Assessment of calcium polysulfide for the remediation of hexavalent chromium in chromite ore processing residue (COPR). Journal of Hazardous Materials, 143, 620–628.

    Article  CAS  Google Scholar 

  • Weber, E. J. (1996). Iron-mediated reductive transformations: Investigation of reaction mechanism. Environmental Science & Technology, 30, 716–719.

    Article  CAS  Google Scholar 

  • Weng, C.-H., Lin, Y.-T., Lin, T. Y., & Kao, C. M. (2007). Enhancement of electrokinetic remediation of hyper-Cr(VI) contaminated clay by zero-valent iron. Journal of Hazardous Materials, 149, 292–302.

    Article  CAS  Google Scholar 

  • White, A. F., & Paterson, M. L. (1996). Reduction of aqueous transition metal species on the surface of Fe(II)-containing oxides. Geochimica et Cosmochimica Acta, 60, 3799–3814.

    Article  CAS  Google Scholar 

  • WHO. (2004). Guidelines for drinking water quality, 3rd ed., vol 1. Recommendations. Geneva: World Health Organisation.

    Google Scholar 

  • Wilkin, R. T., Puls, R. W., & Sewell, G. W. (2005). Long-term performance of permeable reactive barriers using zero-valent iron: geochemical and microbiological effects. Ground Water, 22, 165–168.

    Google Scholar 

  • Williams, A. G. B., & Scherer, M. M. (2001). Kinetics of Cr(VI) reduction by carbonate green rust. Environmental Science & Technology, 35, 3488–3494.

    Article  CAS  Google Scholar 

  • Wise, S. S., Holmes, A. L., & Wise, J. P., Sr. (2006). Particulate and soluble hexavalent chromium are cytotoxic and genotoxic to human lung epithelial cells. Mutation Research, 610, 2–7.

    CAS  Google Scholar 

  • Wise, S. S., Shaffiey, F., LaCerte, C., Goertz, C. E. C., Dunn, J. L., Gulland, F. M. D., et al. (2009). Particulate and soluble hexavalent chromium are cytotoxic and genotoxic to Steller sea lion lung cells. Aquatic Toxicology, 91, 329–335.

    Article  CAS  Google Scholar 

  • Wu, D., Sui, Y., He, S., Wang, X., Li, C., & Kong, H. (2008). Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash. Journal of Hazardous Materials, 155, 415–423.

    Article  CAS  Google Scholar 

  • Wu, Y., Zhang, J., Tong, Y., & Xu, X. (2009). Chromium(VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles. Journal of Hazardous Materials, 172, 1640–1645.

    Article  CAS  Google Scholar 

  • Xing, Y., Chen, X., & Wang, D. (2007). Electrically regenerated ion exchange for removal and recovery of Cr(VI) from wastewater. Environmental Science & Technology, 41, 1439–1443.

    Article  CAS  Google Scholar 

  • Xu, Y., & Zhao, D. (2007). Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Research, 41, 2101–2108.

    Article  CAS  Google Scholar 

  • Yang, Y. (2006). Reduction of TCE and chromate by granular iron in the presence of dissolved CaCO3. MS thesis, University of Waterloo.

  • Yang, J. E., Kim, J. S., Ok, Y. S., Kim, S.-J., & Yoo, K.-Y. (2006). Capacity of Cr(VI) reduction in an aqueous solution using different sources of zerovalent irons. Korean Journal of Chemical Engineering, 23, 935–939.

    Article  CAS  Google Scholar 

  • Yang, J. E., Kim, J. S., Ok, Y. S., & Yoo, K. R. (2007). Mechanistic evidence and efficiency of the Cr(VI) reduction in water by different sources of zerovalent irons. Water Science and Technology, 55, 197–202.

    Article  CAS  Google Scholar 

  • Yao, J., Tian, L., Wang, Y., Djah, A., Wang, F., Chen, H., et al. (2008). Microcalorimetric study the toxic effect of hexavalent chromium on microbial activity of Wuhan brown sandy soil: An in vitro approach. Ecotoxicology and Environmental Safety, 69, 289–295.

    Article  CAS  Google Scholar 

  • Yoon, I.-H., Bang, S., Chang, J.-S., Kim, M. G., & Kim, K.-W. (2011). Effects of pH and dissolved oxygen on Cr(VI) removal in Fe(0)/H2O systems. Journal of Hazardous Materials, 186, 855–862.

    Article  CAS  Google Scholar 

  • Yuan, T.-H., Lian, I.-B., Tsai, K.-Y., Chang, T.-K., Chiang, C.-T., Su, C.-C., et al. (2011). Possible association between nickel and chromium and oral cancer: A case–control study in central Taiwan. The Science of the Total Environment, 406, 1046–1052.

    Google Scholar 

  • Yun, Y.-S., Park, D., Park, J. M., & Volesky, B. (2001). Biosorption of trivalent chromium on the brown seaweed biomass. Environmental Science & Technology, 35, 4353–4358.

    Article  CAS  Google Scholar 

  • Zazo, J. A., Paull, J. S., & Jaffe, P. R. (2008). Influence of plants on the reduction of hexavalent chromium in wetland sediments. Environmetal Pollution, 156, 29–35.

    Article  CAS  Google Scholar 

  • Zhang, W.-X. (2003). Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 5, 323–332.

    Article  CAS  Google Scholar 

  • Zhang, R., Sun, H., & Yin, J. (2008). Arsenic and chromate removal from water by iron chips—Effects of anions. Frontiers of Environmental Science & Engineering in China, 2, 203–208.

    Article  Google Scholar 

  • Zhou, H. Y., Cheung, R. Y. H., Chan, K. M., & Wong, M. H. (1998). Metal concentrations in sediments and tilapia collected from inland waters of Hong Kong. Water Research, 32, 3331–3340.

    Article  CAS  Google Scholar 

  • Zhou, H., He, Y., Lan, Y., Mao, J., & Chen, S. (2008). Influence of complex reagents on removal of chromium(VI) by zero-valent iron. Chemosphere, 72, 870–887.

    Article  CAS  Google Scholar 

  • Zongo, I., Leclerc, J.-P., Maiga, H. A., Wethe, J., & Lapicque, F. (2009). Removal of hexavalent chromium from industrial wastewater by electrocoagulation: A comprehensive comparison of aluminium and iron electrodes. Separation and Purification Technology, 66, 159–166.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the CNCSIS-UEFISCDI for financial support that made this research possible. This research was conducted under PN II Exploratory Research Project no. 647/19.01.2009 “Innovative technologies for the removal of hexavalent chromium from wastewaters by reuse of scrap iron”, CNCSIS code 1031/2008. The manuscript was improved by the insightful comments of anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Gheju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gheju, M. Hexavalent Chromium Reduction with Zero-Valent Iron (ZVI) in Aquatic Systems. Water Air Soil Pollut 222, 103–148 (2011). https://doi.org/10.1007/s11270-011-0812-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0812-y

Keywords

Navigation