Skip to main content
Log in

Significance of Silver Birch and Bushgrass for Establishment of Microbial Heterotrophic Community in a Metal-Mine Spoil Heap

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Differences in the culturable fractions of total and metal-tolerant bacteria inhabiting bulk soil of a metal-mine spoil heap and the rhizosphere of silver birch (Betula pendula) or bushgrass (Calamagrostis epigejos), completed with changes in total microbial community structure in the soil, were assessed by MIDI-FAME (fatty acid methyl ester) profiling of whole-cell fatty acids. In addition, the abundance of metal-tolerant populations among the culturable bacterial communities and their identity and the metal-tolerance patterns were determined. The high proportions of Cu- and Zn-tolerant bacteria that ranged from 60.6% to 94.8% were ascertained in the heap sites. Within 31 bacterial isolates obtained, 24 strains were Gram-positive and Arthrobacter, Bacillus, Rathayibacter, Brochothrix, and Staphylococcus represented those identified. Minimum inhibitory concentration (MIC) data indicated that several strains developed multi-metal tolerance, and the highest tolerance to Cu (10 mM) and Zn (12 mM) was found for Pseudomonas putida TP3 and three isolated strains (BS3, TP12, and SL16), respectively. The analysis of FAME profiles obtained from the culturable bacterial communities showed that Gram-positive bacteria predominated in bulk soil of all heap sites. In contrast, the rhizosphere communities showed a lower proportion of the Gram-positive group, especially for silver birch. For the total microbial community, mostly Gram-negative bacteria (e.g., Pseudomonas) inhabited the heap sites. The results suggest that the quantitative and qualitative development of heterotrophic microbiota in the soil of the metal-mine spoil heap seems to be site-dependent (i.e., rhizosphere vs. bulk soil), according to differences in the site characteristics (e.g., enrichment of nutrients and total metal concentrations) and impact of plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bååth, E., Frostegård, A., & Fritze, H. (1992). Soil bacterial biomass, activity, phospholipid fatty acid pattern and pH tolerance in an area polluted with alkaline dust deposition. Applied and Environmental Microbiology, 58, 4026–4031.

    Google Scholar 

  • Bååth, E. M., Díaz-Raviña, M. R., & Bakken, L. R. (2005). Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil. Microbial Ecology, 50, 496–505.

    Article  Google Scholar 

  • Belimov, A. A., Hontzeas, N., Safronova, V. I., Demchinskaya, S. V., Piluzza, G., Llitta, S., et al. (2005). Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry, 37, 241–250.

    Article  CAS  Google Scholar 

  • Brim, H., Heuer, H., Krögerrecklenfort, E., Mergeay, M., & Smalla, K. (1999). Characterization of the bacterial community of a zinc-polluted soil. Canadian Journal of Microbiology, 45, 326–338.

    Article  CAS  Google Scholar 

  • Bruins, M. R., Kapil, S., & Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and Environmental Safety, 45, 198–207.

    Article  CAS  Google Scholar 

  • Chien, C., Kuo, Y., Chen, C., Hung, Ch, Yeh, C., & Yeh, W. (2008). Microbial diversity of soil bacteria in agricultural field contaminated with heavy metals. Journal of Environmental Sciences, 20, 359–363.

    Article  CAS  Google Scholar 

  • Dang, Z., Liu, C., & Haigh, M. J. (2002). Mobility of heavy metals associated with natural weathering of coal mine spoils. Environmental Pollution, 118, 419–426.

    Article  CAS  Google Scholar 

  • Delorme, T. A., Gagliardi, J. V., Angle, J. S., & Chaney, R. L. (2001). Influence of the zinc hyperaccumulator Thlaspi caerulescens L. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Canadian Journal of Microbiology, 47, 773–776.

    Article  CAS  Google Scholar 

  • Díaz-Raviña, M., & Bååth, E. (1996). Development of metal-tolerance in soil bacterial communities expose to experimentally increased metal levels. Applied and Environmental Microbiology, 62, 2970–2977.

    Google Scholar 

  • Ehrlich, H. L., (1997). Microbes and metals. Applied Microbiology and Biotechnology, 48, 687–692.

    Google Scholar 

  • Ellis, R. J., Morgan, P., Weightman, A. J., & Fry, J. C. (2003). Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Applied and Environmental Microbiology, 69, 223–3230.

    Article  Google Scholar 

  • Frostegård, A., Bååth, E., & Tunlid, A. (1993). Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analyses. Soil Biology and Biochemistry, 25, 723–730.

    Article  Google Scholar 

  • Frostegård, A., Tunlid, A., & Bååth, E. (1996). Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biology and Biochemistry, 28, 55–63.

    Article  Google Scholar 

  • Germida, J. J., & Siciliano, S. D. (2001). Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biology and Fertility of Soils, 33, 410–415.

    Google Scholar 

  • Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biology and Biochemistry, 30, 1389–1414.

    Google Scholar 

  • Hattori, H. (1992). Influence of heavy metals on soil microbial activities. Soil Science and Plant Nutrition, 38, 93–100.

    CAS  Google Scholar 

  • Hattori, T., Mitsui, H., Haga, H., Wakao, N., & Shikano, S. (1997). Advances in soil microbial ecology and the biodiversity. Antonie van Leeuwenhoek, 72, 21–28.

    Article  CAS  Google Scholar 

  • He, L. Y., Zhang, Y. F., Ma, H. Y., Su, L. N., Chen, Z. J., & Wang, Q. Y. (2010). Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Applied Soil Ecology, 44, 49–55.

    Article  Google Scholar 

  • Hu, Q., Qi, H., Zeng, J., & Zhang, H. (2007). Bacterial diversity in soils around a lead and zinc mine. Journal of Environmental Sciences, 19, 74–79.

    Article  CAS  Google Scholar 

  • Ibekwe, A. M., & Kennedy, A. C. (1998). Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiology Ecology, 26, 151–163.

    Article  CAS  Google Scholar 

  • Kelly, J. J., Häggblom, M. M., & Tate, R. L. (2003). Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipids fatty acid profiles. Biology and Fertility of Soils, 38, 65–71.

    Article  CAS  Google Scholar 

  • Khan, M., & Scullion, J. (2000). Effect of soil on microbial responses to metal contamination. Environmental Pollution, 110, 115–125.

    Article  CAS  Google Scholar 

  • Kidd, P., Barceló, J., Bernal, M. P., Navari-Izo, F., Poschenrider, C., Shilev, S., et al. (2009). Trace element behaviour at the root-soil interface: Implications in phytoremediation. Environmental and Experimental Botany, 67, 243–259.

    Article  CAS  Google Scholar 

  • Kozdrój, J. (1995). Microbial responses to single or successive soil contamination with Cd or Cu. Soil Biology and Biochemistry, 27, 1459–1465.

    Article  Google Scholar 

  • Kozdrój, J. (2000). Microflora of technogenous wastes characterized by fatty acid profiling. Microbiological Research, 155, 149–156.

    Google Scholar 

  • Kozdrój, J., & van Elsas, J. D. (2001). Structural diversity of microbial communities in arable soils of a heavily industrialized area determined by PCR-DGGE fingerprinting and FAME profiling. Applied Soil Ecology, 17, 31–42.

    Article  Google Scholar 

  • Kozdrój, J., Trevors, J. T., & van Elsas, J. D. (2004). Influence of introduced potential biocontrol agents on maize seedling growth and bacterial community structure in the rhizosphere. Soil Biology and Biochemistry, 36, 1775–1784.

    Article  Google Scholar 

  • Kozdrój, J. (2008). Microbial community in the rhizosphere of young maize is susceptible to the impact of introduced pseudomonads. The Journal of General and Applied Microbiology, 54, 205–210.

    Article  Google Scholar 

  • Kuffner, M., Puschenreiter, M., Wieshammer, G., Gorfer, M., & Sessitsch, A. (2008). Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant and Soil, 304, 35–44.

    Article  CAS  Google Scholar 

  • Kunito, T., Kazutoshi, S., Nagaoka, K., Oyaizu, H., & Matsumoto, S. (2001). Characterization of copper-resistant bacterial community in rhizosphere of highly copper-contaminated soil. European Journal of Soil Biology, 37, 95–102.

    Article  CAS  Google Scholar 

  • Ledin, M. (2000). Accumulation of metals by microorganisms—Processes and importance for soil system. Earth Science Reviews, 51, 1–31.

    Article  CAS  Google Scholar 

  • Lorenz, N., Hintemann, T., Kramarewa, T., Katayama, A., Yasuta, T., Marschner, P., et al. (2006). Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biology and Biochemistry, 38, 1430–1437.

    Article  CAS  Google Scholar 

  • Malik, A., Khan, I. F., & Aleem, A. (2002). Plasmid incidence in bacteria from agricultural and industrial soils. World Journal of Microbiology & Biotechnology, 18, 827–833.

    Article  CAS  Google Scholar 

  • Microbial ID Inc. (1999). Microbial Identification System Operating Manual, Version 7. Newark, Delaware.

  • Monchy, S., Mohammed, A., Benotmane, M. A., Janssen, P., Vallaeys, T., Taghavi, S., et al. (2007). Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialised in the maximal viable response to heavy metals. Journal of Bacteriology, 189, 7417–7425.

    Article  CAS  Google Scholar 

  • Nies, D. H., & Silver, S. (1995). Ion efflux systems involved in bacterial metal resistance. Journal of Industrial Microbiology, 14, 186–199.

    Article  CAS  Google Scholar 

  • Pérez-de-Mora, A., Burgosa, P., Madejóna, E., Cabreraa, F., Jaeckel, P., & Schloter, M. (2006). Microbial community structure and function in a soil contaminated by heavy metals: Effects of plant growth and different amendments. Soil Biology and Biochemistry, 38, 327–341.

    Google Scholar 

  • Piotrowska-Seget, Z., Cycoń, M., & Kozdrój, J. (2005). Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Applied Soil Ecology, 28, 237–246.

    Article  Google Scholar 

  • Pennanen, T., Frosetgård, A., Fritze, H., & Bååth, E. (1996). Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal polluted gradients in coniferous forests. Applied and Environmental Microbiology, 62, 420–428.

    CAS  Google Scholar 

  • Rajapaksha, R. M. C. P., Tobor-Kapłon, M. A., & Bååth, E. (2004). Metal toxicity affects fungal and bacterial activities in soil differently. Applied and Environmental Microbiology, 70, 2966–2973.

    Article  CAS  Google Scholar 

  • Rajkumar, M., & Freitas, H. (2008). Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresource Technology, 99, 3491–3498.

    Article  CAS  Google Scholar 

  • Rasmussen, L. D., & Sørensen, S. J. (2001). Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. FEMS Microbiology Ecology, 36, 1–9.

    Article  CAS  Google Scholar 

  • Roane, T. M. (1999). Lead resistance in two bacterial isolates from heavy metal-contaminated soils. Microbial Ecology, 37, 218–224.

    Article  CAS  Google Scholar 

  • Roane, T. M., & Kellog, S. T. (1996). Characterization of bacterial communities in heavy metal contaminated soils. Canadian Journal of Microbiology, 42, 593–603.

    Article  CAS  Google Scholar 

  • Renella, G., Mench, M., van der Lelie, D., Pietramellara, G., Ascher, J., Ceccherini, M. T., et al. (2004). Hydrolase activity, microbial biomass and community structure in long-term Cd-contaminated soils. Soil Biology and Biochemistry, 36, 443–451.

    Article  CAS  Google Scholar 

  • Ryan, R. P., Ryan, D. J., & Dowling, D. N. (2005). Multiple metal resistant transferable phenotypes in bacteria as indicators of soil contamination with heavy metals. Journal of Soil Sediments, 5, 95–100.

    Article  CAS  Google Scholar 

  • Schinner, F., Öhlinger, R., Kandeler, E., & Margesin, R. (1996). Methods in Soil Biology. Springer, Heidelberg Berlin New York.

  • Schlegel, H. G., Cosson, J. P., & Baker, A. J. M. (1991). Nickel-hyperaccumulating plants provide a niche for nickel-resistant bacteria. Botanical Acta, 104, 18–25.

    CAS  Google Scholar 

  • Schutter, M. E., & Fuhrmann, J. J. (2001). Soil microbial community responses to fly ash amendment as revealed by analyses of whole soils and bacterial isolates. Soil Biology and Biochemistry, 33, 1947–1958.

    Article  CAS  Google Scholar 

  • Tom-Petersen, A., Leser, T. D., Marsh, T. L., & Nybroe, O. (2003). Effects of copper on the bacterial community in agricultural soil analyzed by the T-RFLP technique. FEMS Microbiology Ecology, 46, 53–62.

    Article  CAS  Google Scholar 

  • Van Gronsveld, J., Sterckx, J., van Assche, F., & Clijsters, H. (1995). Rehabilitation studies on an old nonferrous waste dumping ground – effects of revegetation and metal immobilization by beringite. Journal of Geochemical Exploration, 52, 221–229.

    Google Scholar 

  • Wani, P. H., Khan, M. S., & Zaidi, A. (2008). Impact of zinc-tolerant plant growth-promoting rhizobacteria on lentil grown in zinc-amended soil. Agronomy for Sustainable Development, 28, 449–455.

    Article  Google Scholar 

  • Zelles, L. (1999). Fatty acid patterns of phospholipids, lipopolysaccharides in the characterization of microbial communities in soil: a review. Biology and Fertility of Soils, 29, 111–129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Kozdrój.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sułowicz, S., Płociniczak, T., Piotrowska-Seget, Z. et al. Significance of Silver Birch and Bushgrass for Establishment of Microbial Heterotrophic Community in a Metal-Mine Spoil Heap. Water Air Soil Pollut 214, 205–218 (2011). https://doi.org/10.1007/s11270-010-0417-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0417-x

Keywords

Navigation