Skip to main content
Log in

Influence of the Iron-Reducing Bacteria on the Release of Heavy Metals in Anaerobic River Sediment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The impact of autochthonous anaerobic bacteria on the release of metals in river sediment was studied. The sediments were characterized and bacterial activity was monitored in a batch reactor, where the sediments were incubated with a synthetic substrate solution containing glucose as carbon source. The results showed that metal release was correlated to the bacterial growth (carbon mineralization). In particular, a relationship between iron reduction and metal release was observed indicating that iron-reducing bacteria had a strong influence. By reductive dissolution of iron oxides, bacteria also released their associated toxic elements into the liquid phase. While organic analysis showed acetate and butyrate production leading to a decrease in pH and indicating a Clostridium fermentative bacteria activity, the results did not indicate any direct role of organic acids in the dissolution of iron and their associated metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AFNOR (1996). NFX 31-147 Mise en solution totale par attaque acide.

  • Akcay, H., Oguz, A., & Karapire, C. (2003). Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments. Water Research, 37(4), 813–822.

    Article  CAS  Google Scholar 

  • Berthelin, J., Munier-Lamy, C., & Leyval, C. (1995). Effect of microorganisms on mobility of heavy metals in soils. In P. M. Huang, J. Berthelin, J.-M. Bollag, W. B. McGill, & A. L. Page (Eds.), Environmental impact of soil component interactions—Metals, other inorganics and microbial activities (Vol. 2, pp. 3–18). London: Lewis.

    Google Scholar 

  • Bettinelli, M., Beone, G. M., Spezia, S., & Baffi, C. (2000). Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis. Analytica Chimica Acta, 424, 289–296.

    Article  CAS  Google Scholar 

  • Bilali, L. El, Rasmussen, P. E., Hall, G. E. M., & Fortin, D. (2002). Role of sediment composition in trace metal distribution in lake sediments. Applied Geochemistry, 17, 1171–1181.

    Article  Google Scholar 

  • Bosecker, K. (1997). Bioleaching: Metal solubilization by microorganisms. FEMS Microbiology Reviews, 20, 591–604.

    Article  CAS  Google Scholar 

  • Bousserrhine, N., Gasser, U. G., Jeanroy, E., & Berthelin, J. (1999a). Comparison between bacterial and chemical dissolution of Al-substituted goethite. Incidence on mobilization of iron. In J. Berthelin, P. M. Huang, J. M. Bollag, & F. Andreux (Eds.), Effect of mineral-organic-microorganism interactions on soil and freshwater environments (pp. 15–24). New York: Kluwer Academic.

    Google Scholar 

  • Bousserrhine, N., Gasser, U. G., Jeanroy, E., & Berthelin, J. (1999b). Bacterial and chemical reductive dissolution of Mn-, Co-, Cr-, and Al- substituted goethites. Geomicrobiology Journal, 16(3), 245–258.

    Article  CAS  Google Scholar 

  • Calmano, W., & Förstner, U. (1983). Chemical extraction of heavy metals in polluted river sediments in central Europe. Science of the Total Environment, 28, 77–90.

    Article  CAS  Google Scholar 

  • Calmano, W., Hong, J., & Förstner, U. (1993). Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Science and Technology, 28, 223–235.

    CAS  Google Scholar 

  • Campanella, L., D'Orazio, D., Petronio, B. M., & Pietrantonio, E. (1995). Proposal for a metal speciation study in sediments. Analytica Chimica Acta, 309, 387–393.

    Article  CAS  Google Scholar 

  • Cappuyns, V., Swennen, R., & Devivier, A. (2006). Dredged river sediments: Potential chemical time bombs ? A case study. Water, Air, & Soil Pollution, 171, 49–66.

    Article  CAS  Google Scholar 

  • Carpentier, S., Moilleron, R., Beltran, C., Herve, D., & Thevenot, D. (2002a). Quality of dredged material in the River Seine basin (France). I. Physico-chemical properties. The Science of The Total Environment, 295, 101–113.

    Article  CAS  Google Scholar 

  • Carpentier, S., Moilleron, R., Beltran, C., Herve, D., & Thevenot, D. (2002b). Quality of dredged material in the river Seine basin (France). II. Micropollutants. The Science of The Total Environment, 299, 57–72.

    Article  CAS  Google Scholar 

  • Charlatchka, R., & Cambier, P. (2000). Influence of reducing conditions on solubility of trace metals in contaminated soils. Water, Air, & Soil Pollution, 118, 143–168.

    Article  CAS  Google Scholar 

  • Chen, S.-Y., & Lin, J.-G. (2001). Bioleaching of heavy metals from sediments: Significance of pH. Chemosphere, 44, 1093–1102.

    Article  CAS  Google Scholar 

  • Chuan, M. C., Shu, G. Y., & Liu, J. C. (1996). Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH. Water, Air, & Soil Pollution, 90, 543–556.

    Article  CAS  Google Scholar 

  • Dassonville, F., Godon, J. J., Renault, P., Richaume, A., & Cambier, P. (2004). Microbial dynamics in an anaerobic soil slurry amended with glucose, and their dependence on geochemical processes. Soil Biology and Biochemistry, 36, 1417–1430.

    Article  CAS  Google Scholar 

  • Dold, B. (2003). Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. Journal of Geochemical Exploration, 80, 55–68.

    Article  CAS  Google Scholar 

  • Francis, A. J., & Dodge, C. J. (1990). Anaerobic microbial remobilization of toxic metals coprecipitated with iron oxide. Environmental Science and Technology, 24(3), 373–378.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2004). Microbial influence on metal mobility and application for bioremediation. Geoderma, 122, 109–119.

    Article  CAS  Google Scholar 

  • Gomez, C., & Bosecker, K. (1999). Leaching heavy metals from contaminated soil by using Thiobacillus ferrooxidans or Thiobacillus thiooxidans. Geomicrobiology Journal, 16, 233–244.

    Article  CAS  Google Scholar 

  • Gundersen, P., & Steinnes, E. (2003). Influence of pH and TOC concentration on Cu, Zn, Cd, and Al speciation in rivers. Water Research, 37, 307–318.

    Article  CAS  Google Scholar 

  • Herr, C., & Gray, N. F. (1997). Sampling riverine sediments impacted by acid mine drainage: Problems and solutions. Environmental Geology, 29, 37–45.

    Article  CAS  Google Scholar 

  • Hlavay, J., Prohaska, T., Weisz, M., Wenzel, W. W., & Stingeder, G. J. (2004). Determination of trace elements bound to soils and sediments fractions. Pure Applied Chemistry, 76(2), 415–442.

    Article  CAS  Google Scholar 

  • Huang, P.-M., Wang, M.-K., & Chiu, C.-Y. (2005). Soil mineral-organic matter-microbe interactions: Impacts on biogeochemical processes and biodiversity in soils. Pedobiologia, 49, 609–635.

    Article  CAS  Google Scholar 

  • Jones, D. T., & Woods, D. R. (1986). Acetone-butanol fermentation revisited. Microbiological Reviews, 50, 484–524.

    CAS  Google Scholar 

  • Kurek, E. (2002). Microbial mobilization of metals from soil minerals under aerobic conditions. In P. M. Huang, J.-M. Bollag, & N. Senesi (Eds.), Interactions between soil particles and microorganisms. Impact on the terrestrial ecosystem. IUPAC Series on Analytical and Physical Chemistry of Environmental systems (pp. 189–225). Chichester: Wiley.

    Google Scholar 

  • Ledin, M. (2000). Accumulation of microorganisms—Processes and importance for soil systems. Earth Science Reviews, 51, 1–31.

    Article  CAS  Google Scholar 

  • Leermakers, M., Gao, Y., Gabelle, C., Lojen, S., Ouddane, B., Wartel, M., et al. (2005). Determination of high resolution pore water profiles of trace metals in sediments of the rupel river (Belgium) using Det (Diffusive Equilibrium in Thin Films) and DGT (Diffusive Gradients in Thin Films) techniques. Water, Air, & Soil Pollution, 166, 265–286.

    Article  CAS  Google Scholar 

  • Lin, J.-G., & Chen, S.-Y. (1998). The relationship between adsorption of heavy metals and organic matter in river sediments. Environment International, 24(3), 345–352.

    Article  CAS  Google Scholar 

  • Linde, M., Öborn, I., & Gustafsson, J. P. (2007). Effects of changed soil conditions on the mobility of trace metals in moderately contaminated urban soils. Water, Air, and Soil Pollution, 183, 69–83.

    Article  CAS  Google Scholar 

  • Lombardi, A., Garcia, T., & Oswaldo, J. (2002). Biological leaching of Mn, Al, Zn, Cu and Ti in an anaerobic sewage sludge effectuated by Thiobacillus ferrooxidans and its effect on metal partitioning. Water Research, 36, 3193–3202.

    Article  CAS  Google Scholar 

  • Lovley, D. R. (1991). Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological Reviews, 55, 259–287.

    CAS  Google Scholar 

  • Lovley, D. R., & Phillips, E. J. P. (1988). Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology, 54, 1472–1480.

    CAS  Google Scholar 

  • Lovley, D. R., & Phillips, E. J. P. (1989). Requirement for a microbial consortium to completely oxidize glucose in Fe(III)-reducing sediments. Applied and Environmental Microbiology, 55, 3234–3236.

    CAS  Google Scholar 

  • Quantin, C., Becquer, T., Rouiller, J. H., & Berthelin, J. (2001). Oxide weathering and trace metal release by bacterial reduction in a new caledonia ferralsol. Biogeochemistry, 53(3), 323–340.

    Article  CAS  Google Scholar 

  • Quevauviller, P., Ure, A., Muntau, H., & Griepink, B. (1993). Improvement of analytical measurements within the BCR-programme: Single and sequential extraction procedures applied to soil and sediment analysis. International Journal of Environmental and Analytical Chemistry, 5, 129–134.

    Article  Google Scholar 

  • Qureshi, S., Richards, B. K., Hay, A. G., Tsai, C. C., McBride, M. B., Baveye, P., et al. (2003). Effect of microbial activity on trace element release from sewage sludge. Environmental Science & Technology, 37, 3361–3366.

    Article  CAS  Google Scholar 

  • Rauret, G. (1998). Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta, 46, 449–455.

    Article  CAS  Google Scholar 

  • Regnell, O., & Tunlid, A. (1991). Laboratory study of chemical speciation of mercury in lake sediment and water under aerobic and anaerobic conditions. Applied and Environmental Microbiology, 57, 789–795.

    CAS  Google Scholar 

  • Reynolds, K. A., & Pepper, I. L. (2000). Microorganisms in the environment. In R. M. Maier, I. L. Pepper, & C. P. Gerba (Eds.), Environmental microbiology (pp. 19–27). San Diego: Academic.

    Google Scholar 

  • Ryu, H. W., Moon, H. S., Lee, E. Y., Cho, K. S., & Choi, H. (2003). Leaching characteristics of heavy metals from sewage sludge by Acidithiobacillus thiooxidans MET. Journal of Environmental Quality, 32, 751–759.

    Article  CAS  Google Scholar 

  • Schippers, A., & Sand, W. (1999). Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Applied and Environmental Microbiology, 65(1), 319–321.

    CAS  Google Scholar 

  • Sims, J. L., & Patrick, W. H. (1978). The distribution of micronutrient cations in soil under conditions of varying redox potential and pH. Soil Science Society of America Journal, 42, 258–262.

    Article  CAS  Google Scholar 

  • Stephens, S. R., Alloway, B. J., Parker, A., Carter, J. E., & Hodson, M. E. (2001). Changes in the leachability of metals from dredged canal sediments during drying and oxidation. Environmental Pollution, 114, 407–413.

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: Chemical equilibria and rates in natural waters. New York: Wiley.

    Google Scholar 

  • Tessier, A., Campbell, P. G. S., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Thevenot, D. R., Moilleron, R., Lestel, L., Gromaire, M.-C., Rocher, V., Cambier, P., Bonte, P., Colin, J.-L., de Ponteves, C., & Meybeck, M. (2007). Critical budget of metal sources and pathways in the Seine River basin (1994–2003) for Cd, Cr, Cu, Hg, Ni, Pb and Zn. Science of The Total Environment, Human activity and material fluxes in a regional river basin: The Seine River watershed—Seine Special Issue, 375, 180–203.

  • Tormo, M. A., & Izco, J. M. (2004). Alternative reversed-phase high-performance liquid chromatography method to analyse organic acids in dairy products. Journal of Chromatography, 1033(2), 305–310.

    Article  CAS  Google Scholar 

  • Trolard, F., Bourrie, G., Jeanroy, E., Herbillon, A. J., & Martin, H. (1995). Trace metals in natural iron oxides from laterites: A study using selective kinetic extraction. Geochimica Cosmochima Acta, 59, 1285–1297.

    Article  CAS  Google Scholar 

  • Yang, J. Y., Yang, X. E., He, Z. L., Li, T. Q., Shentu, J. L., & Stoffella, P. J. (2006). Effects of pH, organic acids, and inorganic ions on lead dissolution from soils. Environmental Pollution, 143, 9–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Research Ministry and the University Paris Est for their financial and technical support and also to the Service of the Navigation of Seine for their authorization and technical support for the sediment sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Bousserrhine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gounou, C., Bousserrhine, N., Varrault, G. et al. Influence of the Iron-Reducing Bacteria on the Release of Heavy Metals in Anaerobic River Sediment. Water Air Soil Pollut 212, 123–139 (2010). https://doi.org/10.1007/s11270-010-0327-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0327-y

Keywords

Navigation