Skip to main content
Log in

Degradation of Monoethanolamine in Aqueous Solution by Fenton’s Reagent with Biological Post-treatment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Alkanolamines in the wastewater from gas treating plants are not readily biodegradable. In this work, we have investigated the effectiveness of the Fenton’s reagent (H2O2-Fe2+) to treat monoethanolamine (MEA) as a model compound in simulated wastewater. Degradation studies were carried out in a jacketed glass reactor. The effects of concentrations of ferrous sulfate, hydrogen peroxide, and the pH of a solution on the rate of reaction were determined. A pH of 3 was found to be the optimum. The degradation reaction proceeds very fast at the beginning but slows down significantly at a longer time. A larger fractional degradation of the organics in solution was observed if the initial chemical oxygen demand (COD) of the feed solution was high. Gradual addition of H2O2 to the reaction mixture increased the COD removal by about 60% compared to one-time addition of the reagent at the beginning of the process. A rate equation for mineralization of the amine was developed on the basis of a simplified mechanistic model, and the lumped value of the rate constant for COD removal was determined. A partially degraded MEA solution as well as “pure” MEA was subjected to biological oxidation by activated sludge. The former substrate degraded much faster. The degradation rate and biomass generation data could be fitted by the Monod kinetic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alanton, I., & Teksoy, A. S. (2007). Acid dyebath effluent pretreatment using Fenton’s reagent: process optimization, reaction kinetics and effects on acute toxicity. Dyes and Pigments, 73, 31–39.

    Article  Google Scholar 

  • Alshamsi, F. A., Albadwawi, A. S., Alnuaimi, M. M., Rauf, M. A., & Ashraf, S. S. (2006). Comparative efficiencies of the degradation of crystal violet using UV/hydrogen peroxide and Fenton’s reagent. Dyes and Pigments, 72, 1–5.

    Google Scholar 

  • Anotai, J., Lu, M.-C., & Chewpreecha, P. (2006). Kinetics of aniline degradation by Fenton and electro-Fenton processes. Water Research, 40, 1841–1847.

    Article  CAS  Google Scholar 

  • Bossmann, S. H., Oliveros, E., Gob, S., Siegwart, S., Dahlen, E. P., Payawan, L., Jr., et al. (1998). New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically induced Fenton reaction. J Phys Chem, A, 102, 5542–5550.

    Article  CAS  Google Scholar 

  • Brillas, E., Mur, E., Sauleda, R., Sanchez, L., Peral, J., Domenech, X., et al. (1998). Aniline mineralization by AOP’s: anodic axidation, photocatalysis, electro-Fenton and photoelectron-Fenton processes. Applied Catalysis. B, Environmental, 16, 31–42.

    Article  CAS  Google Scholar 

  • Burbano, A. A., Dionysiou, D. D., Suidan, M. T., & Richardson, T. L. (2005). Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent. Water Research, 39, 107–118.

    Article  CAS  Google Scholar 

  • Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals \( \left( {^\bullet {\text{OH}}{,^\bullet }{{\text{O}}^{-} }} \right) \) in aqueous solution. Journal of Physical and Chemical Reference Data, 17, 513–886.

    CAS  Google Scholar 

  • Casero, I., Sicilia, D., Rubio, S., & Perez-Bendito, D. (1997). Chemical degradation of aromatic amines by Fenton’s reagent. Water Research, 31, 1985–1995.

    Article  CAS  Google Scholar 

  • CEFIC Peroxygens H2O2 AM-7157 (2003). Determination of hydrogen peroxide content—titrimetric method.

  • Coates, J. (2000). Interpretation of infrared spectra. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry. New York: Wiley.

    Google Scholar 

  • De Laat, J., & Gallard, H. (1999). Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modelling. Environmental Science and Technology, 33, 2726–2732.

    Article  Google Scholar 

  • De, A. K., Dutta, B. K., & Bhattacharjee, S. (2006). Reaction kinetics for the degradation of phenol and chlorinated phenols using Fenton’s reagent. Environmental Progress, 25, 64–71.

    Article  CAS  Google Scholar 

  • Goff, G. S., & Rochelle, G. T. (2004). Monoethanolamine degradation: O2 mass transfer effect under CO2 capture conditions. Industrial & Engineering Chemistry Research, 43, 6400–6408.

    Article  CAS  Google Scholar 

  • Gulkaya, I., Surucu, G. A., & Dilek, F. B. (2006). Importance of H2O2/Fe2+ ratio in Fenton’s treatment of a carpet dyeing wastewater. Journal of Hazardous Materials, B136, 763–769.

    Article  Google Scholar 

  • Haag, W. R., & Yao, C. C. D. (1992). Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environmental Science and Technology, 26, 1005–1013.

    Article  CAS  Google Scholar 

  • Hickey, W. J., Arnold, S. M., & Harris, R. F. (1995). Degradation of atrazine by Fenton’s reagent: conditions of optimization and product quantification. Environmental Science and Technology, 29, 2083–2089.

    Article  Google Scholar 

  • Hsiao, Y. L., & Nobe, K. J. (1993). Hydroxilation of chlorobenzene and phenol in packed bed flow with electrogenerated Fenton’s reagent. Journal of Applied Electrochemistry, 23, 943–946.

    Article  CAS  Google Scholar 

  • Kang, N., Lee, D. S., & Yoon, J. (2002). Kinetic modeling of Fenton oxidation of phenol and monochlorophenols. Chemosphere, 47, 915–924.

    Article  CAS  Google Scholar 

  • Kittis, M., Adams, C. D., & Daigger, G. T. (1999). The effects of Fenton’s reagent pretreatment on the biodegradability of non-ionic surfactants. Water Research, 33, 2561–2568.

    Article  Google Scholar 

  • Klare, M., Scheen, K., Vogelsang, H., & Jacobs, J. A. C. (2000). Broekaert, degradation of short-chain alkyl and alkanolamines by TiO2- and Pt/TiO2-assisted photocatalysis. Chemosphere, 41, 353–362.

    Article  CAS  Google Scholar 

  • Kohl, A. L,. & Nielsen, R. B. (1997). Gas purification (5th ed.). Houston: Gulf Publishing.

    Google Scholar 

  • Kremer, M. L. (2003). The Fenton reaction. Dependence of the rate on pH. J Phys Chem A, 107, 1734–1741.

    Article  CAS  Google Scholar 

  • Kuo, W. G. (1992). Decolorizing dye wastewater with Fenton’s reagent. Water Research, 26, 881–886.

    Article  CAS  Google Scholar 

  • Lee, Y., Lee, C., & Yoon, J. (2003). High temperature dependence of 2, 4-dichlorophenoxyacetic acid degraded by Fe3+/H2O2 system. Chemosphere, 51, 963–971.

    Article  CAS  Google Scholar 

  • Lou, J. C., & Lee, S. S. (1995). Chemical oxidation of BTX using Fenton’s reagent. Hazardous Waste & Hazardous Materials, 12, 185–193.

    CAS  Google Scholar 

  • Martinez, N. S. S., Fernandez, J. F., Segura, X. F., & Ferrer, A. S. (2003). Preoxidation of an extremely polluted industrial wastewater by the Fention’s reagent. Journal of Hazardous Materials, B101, 315–322.

    Google Scholar 

  • McGinnis, B. D., Adams, V. D., & Middlebrooks, E. J. (2000). Degradation of ethylene glycol in photo-Fenton systems. Water Research, 34, 2346–2354.

    Article  CAS  Google Scholar 

  • MLNG (Malaysian Liquefied Natural Gas, Bintulu, Sarawak, Malaysia) (2007). Personal communication.

  • Nesheiwat, F. K., & Swanson, A. G. (2000). Clean contaminated sites using Fenton’s reagent. Chemical Engineering Progress, 93, 61–66.

    Google Scholar 

  • Neyes, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, B98, 33–50.

    Article  Google Scholar 

  • Oturan, M. A., Oturan, N., Lahitte, C., & Trevin, S. (2001). Production of hydroxyl radicals by electrochemically assisted Fenton’s reagent. Journal of Electroanalytical Chemistry, 507, 96–102.

    Article  CAS  Google Scholar 

  • Pignatello, J. J. (1992). Dark and photo-assisted Fe(III)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environmental Science and Technology, 26, 944–951.

    Article  CAS  Google Scholar 

  • Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005). Spectrometric identification of organic compounds. New York: Wiley.

    Google Scholar 

  • Solozhenko, E. G., Soboleva, N. M., & Goncharuk, V. V. (1995). Decolorization of azodye solutions by Fenton’s oxidation. Water Research, 29, 2206–2210.

    Article  CAS  Google Scholar 

  • Tang, W. Z., & Huang, C. P. (1997). Stoichiometry of Fenton’s reagent in the oxidation of chlorinated aliphatic organic pollutants. Environmental Technology, 18, 13–23.

    CAS  Google Scholar 

  • Tang, S., & Tassos, W. Z. (1997). Oxidation kinetics and mechanisms of trihalomethanes by Fenton’s reagent. Water Research, 31, 1117–1125.

    Article  CAS  Google Scholar 

  • Tekin, H., Bilkay, O., Ataberk, S. S., Baltra, T. H., Ceribasi, I. H., Sanin, F. D., et al. (2006). Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. Journal of Hazardous Materials, B136, 258–265.

    Article  Google Scholar 

  • Turan-Ertas, T., & Gurol, M. D. (2002). Oxidation of diethylene glycol with ozone and modified Fenton reagent. Chemosphere, 47, 293–301.

    Article  CAS  Google Scholar 

  • US EPA Method (1998), Fate, transport and transformation test guidelines, OPPTS 835.3200, Zahn-Wellens/EMPA Test.

  • Vione, D., Merlo, F., Maurino, V., & Minero, C. (2004). Effect of humic acids on the Fenton degradation of phenol. Environmental Chemistry Letters, 2, 129–133.

    Article  CAS  Google Scholar 

  • Walling, C. (1975). Fenton reagent revisited. Accounts of Chemical Research, 8, 125–131.

    Article  CAS  Google Scholar 

  • Yoon, J., Lee, Y., & Kim, S. (2001). Investigation on the reaction pathway of \( ^\bullet {\text{OH}} \) radicals produced by Fenton, S oxidation in the condition of wastewater treatment. Water Science and Technology, 44, 15–21.

    CAS  Google Scholar 

  • Zhang, H., Choi, H. J., & Huang, C.-P. (2006). Treatment of landfill leachate by Fenton’s reagent in continuous stirred tank rector. Journal of Hazardous Materials, B136, 618–623.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sominidevi and Nurul Huda, final year students, for experimental help; Universiti Teknologi Petronas (UTP) for financial assistance through a STIRF project; Dr. Chong Fai Kiat, Senior Lecturer, UTP, for help in taking FTIR spectra; and Mr. Zaaba Mohammad, UTP, for laboratory help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binay K. Dutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harimurti, S., Dutta, B.K., Ariff, I.F.B.M. et al. Degradation of Monoethanolamine in Aqueous Solution by Fenton’s Reagent with Biological Post-treatment. Water Air Soil Pollut 211, 273–286 (2010). https://doi.org/10.1007/s11270-009-0298-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0298-z

Keywords

Navigation