Skip to main content
Log in

Evaluation of the Combined Cr(VI) Removal Capacity of Sawdust and Sawdust-Immobilized Acinetobacter haemolyticus Supplied with Brown Sugar

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The purpose of this study is to evaluate the combined Cr(VI) removal capacities of nonliving (untreated rubber wood sawdust, URWS) and living biomass (URWS-immobilized Acinetobacter haemolyticus) in a continuous laboratory scale downward-flow two column system. Synthetic solutions of Cr(VI) between 237 and 320 mg L−1 were mixed with 1 g L−1 brown sugar in a nonsterile condition. Final Cr(VI) of between 0 and 1.6 mg L−1 indicate a Cr(VI) removal capacity of 99.8–100%. The bacterial Cr(VI) reduction capacity increased with column length. This study shows the feasibility of using the two column system consisting of living (bacteria) and nonliving biomass (URWS) as a useful alternative treatment for Cr(VI) contamination in the aqueous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Chen, Y., & Gu, G. (2005). Preliminary studies on continuous chromium (VI) biological removal from wastewater by anaerobic–aerobic activated sludge process. Bioresource Technology, 96, 1713–1721. doi:10.1016/j.biotech.2004.12.024.

    Article  CAS  Google Scholar 

  • Chirwa, E. M. N., & Wang, Y. T. (1997). Chromium(VI) reduction by Pseudomonas fluorescens LB 300 in fixed-film bioreactor. Journal of Environmental Engineering, 123, 760–766. doi:10.1061/(ASCE)0733-9372(1997) 123:8(760).

    Article  CAS  Google Scholar 

  • Cushnie, G. C,. Jr. (1985). Electroplating wastewater pollution control technology. Park Ridge, NJ: Noyes.

    Google Scholar 

  • Ekenberg, M., Martander, H., & Welander, T. (2005). Biological reduction of hexavalent chromium—a field study. Water Environment Research, 77, 425–428. doi:10.2175/106143005X52175.

    Article  CAS  Google Scholar 

  • Gardea-Torresdey, J. L., Tiemann, K. J., Armendariz, V., Bess-Oberto, L., Chianelli, R. R., Rios, J., et al. (2000). Characterization of Cr (VI) binding and reduction to Cr (III) by the agricultural byproducts of Avenamonida (oat) biomass. Journal of Hazardous Materials, 80, 175–188. doi:10.1016/S0304-3894(00)00301-0.

    Article  CAS  Google Scholar 

  • Greenberg, A. E., Trussell, R. R., & Clesceri, L. S. (1998). Standard methods for the examination of water and wastewater (16th ed.). New York, NY: APHA.

    Google Scholar 

  • Hamadi, N. K., Chen, X. D., Farid, M. M., & Lu, M. G. Q. (2001). Adsorption kinetics for the removal of chromium(VI) from aqueous solution by adsorbents derived from used tyres and sawdust. Chemical Engineering Journal, 84, 95–105. doi:10.1016/S1385-8947(01)00194-2.

    Article  CAS  Google Scholar 

  • Holt, J. G., Krieg, N. R., Sneath, P. H. A., Stanley, J. T., & William, S. T. (1994). Bergey’s manual of determinative bacteriology (9th ed.). New York, NY: Williams and Wilkins.

    Google Scholar 

  • Karthikeyan, T., Rajgopal, S., & Miranda, L. R. (2005). Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. Journal of Hazardous Materials, B124, 192–199. doi:10.1016/j.jhazmat.2005.05.003.

    Article  Google Scholar 

  • Katz, S. A., & Salem, H. (1994). The biological and environmental chemistry of chromium. New York, NY: VCH.

    Google Scholar 

  • Krishna, K. R., & Philip, L. (2005). Bioremediation of Cr(VI) in contaminated soils. Journal of Hazardous Materials, 121, 109–117. doi:10.1016/j.jhazmat.2005.01.018.

    Article  CAS  Google Scholar 

  • Liu, S. X., Chen, X., Chen, X. Y., Liu, Z. F., & Wang, H. L. (2007). Activated carbon with excellent chromium (VI) adsorption performance prepared by acid–base surface modification. Journal of Hazardous Materials, 141, 315–319. doi:10.1016/j.jhazmat.2006.07.006.

    Article  CAS  Google Scholar 

  • Lytle, C. M., Lytle, F. W., Yang, N., Qian, J.-H., Hansen, D., Zayed, A., et al. (1998). Reduction of Cr (VI) to Cr (III) by wetland plants: potential for in situ heavy metal detoxification. Environmental Science & Technology, 32, 3087–3093. doi:10.1021/es980089x.

    Article  CAS  Google Scholar 

  • Mecozzi, M. (2005). Estimation of total carbohydrate amount in environmental samples by the phenol–sulphuric acid method assisted by multivariate calibration. Chemometrics and Intelligent Laboratory Systems, 79, 84–90. doi:10.1016/j.chemolab.2005.04.005.

    Article  CAS  Google Scholar 

  • Megharaj, M., Avudaiyanagam, S., & Naidu, R. (2003). Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Current Microbiology, 47, 51–54. doi:10.1007/s00284-002-3889-0.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pittman, P. U,. Jr. (2006). Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials, B137, 762–811. doi:10.1016/j.jhazmat.2006.06.060.

    Article  Google Scholar 

  • Mohan, D., Singh, K. P., & Singh, V. K. (2005). Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth. Industrial & Engineering Chemistry Research, 44, 1027–1042. doi:10.1021/ie0400898.

    Article  CAS  Google Scholar 

  • Park, D., & Park, J. M. (2006). Mechanisms of the removal of hexavalent chromium by biomaterials or biomaterial-based activated carbons. Journal of Hazardous Materials, B137, 1254–1257. doi:10.1016/j.jhazmat.2006.04.007.

    Article  Google Scholar 

  • Park, D., Yun, Y.-S., Jo, J. H., & Park, J. M. (2005). Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Research, 39, 533–540. doi:10.1016/j.watres.2004.11.002.

    Article  CAS  Google Scholar 

  • Sciban, M., Radetic, B., Kevresan, Z., & Klasnja, M. (2007). Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresource Technology, 98, 402–409. doi:10.1016/j.biortech.2005.12.014.

    Article  CAS  Google Scholar 

  • Shakoori, A. R., Makhdoom, M., & Haq, R. U. (2000). Hexavalent chromium reduction by a di Cr(VI)-resistant Gram-positive bacterium isolated from effluents of tanneries. Applied Microbiology and Biotechnology, 53, 348–351. doi:10.1007/s002530050033.

    Article  CAS  Google Scholar 

  • Wang, Y. T., & Xiao, C. (1995). Factors affecting hexavalent chromium reduction in pure cultures of bacteria. Water Research, 29, 2467–2474. doi:10.1016/0043-1354(95)00093-Z.

    Article  CAS  Google Scholar 

  • Zakaria, Z. A., Zakaria, Z., Surif, S., & Ahmad, W. A. (2007a). Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. Journal of Hazardous Materials, 146, 30–38. doi:10.1016/j.jhazmat.2006.11.052.

    Article  CAS  Google Scholar 

  • Zakaria, Z. A., Zakaria, Z., Surif, S., & Ahmad, W. A. (2007b). Biological detoxification of Cr(VI) using wood-husk immobilized Acinetobacter haemolyticus. Journal of Hazardous Materials, 148, 164–171. doi:10.1016/j.jhazmat.2007.02.029.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the contribution from the Ministry of Science, Technology and Innovation (MOSTI), Malaysia for funding of the project (TF0106B001) and for the Post-Doctoral Fellowship to Zainul Akmar Zakaria at Universiti Teknologi Malaysia (UTM). We are also thankful to Nordiana Nordin (for brown sugar characterization), Marlini Suratman, and Nurfadilah Mohammed (FESEM analysis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainul Akmar Zakaria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, W.A., Zakaria, Z.A., Razali, F. et al. Evaluation of the Combined Cr(VI) Removal Capacity of Sawdust and Sawdust-Immobilized Acinetobacter haemolyticus Supplied with Brown Sugar. Water Air Soil Pollut 204, 195–203 (2009). https://doi.org/10.1007/s11270-009-0037-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0037-5

Keywords

Navigation