Skip to main content
Log in

Chemical Reduction of Hexavalent Chromium and Its Immobilisation Under Batch Conditions Using a Slurry Reactor

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Chemical reduction of the hexavalent chromium, Cr(VI), present in contaminated soil and groundwater was carried out in a slurry reactor under dynamic conditions (120 rpm and 25°C) using different reductants [ferrous sulphate (Fe(II))], sodium bisulphite, sucrose, ascorbic acid and zerovalent iron (ZVI)] in order to evaluate the influence of the reductant on the redox process. Chemical analysis of the contaminated soil revealed a Cr(VI) concentration of 528 ± 31 mg kg−1. Batch studies under dynamic conditions (slurry reactor) using different [Cr(VI)]/[reductant] molar ratios revealed that only Fe(II) and ZVI species can promote both reduction of Cr(VI) and immobilisation of Cr(III) (formation of an insoluble hydroxide compound). It was verified that 1.0 g of ZVI is capable of converting 104 ± 5 mg of Cr(VI) in Cr(III). A kinetic redox study was carried out using ZVI in different conditions. In all cases, it was verified that Cr(VI) reduction follows a pseudo-first-order kinetic behaviour. The dependence of the pseudo-first-order kinetic rate constant, k obs, on [ZVI] indicates that the redox process taking place in the slurry reactor is rather complex. A phenomenological kinetic equation for the redox process taking place in the slurry reactor was presented in order to describe the behaviour of k obs under non-ideal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beukes, J. P., Pienaar, J. J., Lachmann, G., & Giesekke, E. W. (1999). The reduction of hexavalent chromium by sulphite in wastewater. Water SA, 25(3), 363–370.

    CAS  Google Scholar 

  • Beukes, J. P., Pienaar, J. J., & Lachmann, G. (2000). The reduction of hexavalent chromium by sulphite in wastewater—An explanation of the observed reactivity pattern. Water SA, 26(3), 393–395.

    CAS  Google Scholar 

  • Calder, L. M. (1998). Chromium contamination of groundwater. In J. O. Niagru, & E. Niober (Eds.), Chromium in the natural and human environments (pp. pp. 215–229). New York: Wiley.

    Google Scholar 

  • Cao, J., & Zhang, W. X. (2006). Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. Journal of Hazardous Materials, 132(2–3), 213–219. doi:10.1016/j.jhazmat.2005.09.008.

    Article  CAS  Google Scholar 

  • Elliot, D. W., & Zhang, W. X. (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology, 35, 4922–4926. doi:10.1021/es0108584.

    Article  Google Scholar 

  • Franco, D. V., Da Silva, L. M., & Jardim, W. F. (2009). Reduction of hexavalent chromium in soil and ground water using zero-valent iron under batch and semi-batch conditions. Water, Air, and Soil Pollution, 197, 49–60. doi:10.1007/s11270-008-9790-0.

    Article  CAS  Google Scholar 

  • Haight, G. P., Perchonock, E., Emmenegger, F., & Gordon, G. (1965). The mechanism of the oxidation of sulphur(IV) by chromium in acid solution. Journal of the American Chemical Society, 87(17), 3835–3840. doi:10.1021/ja01095a009.

    Article  CAS  Google Scholar 

  • He, F., Zhao, D., Liu, J., & Roberts, C. B. (2007). Stabilization of Fe–Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & Engineering Chemistry Research, 46(1), 29–34. doi:10.1021/ie0610896.

    Article  CAS  Google Scholar 

  • Jacobs, J., Hardison, R. L., & Rose, J. V. (2001). In situ remediation of heavy metals using sulfur-based treatment technologies. Hydrovisions, 10, 1–4.

    Google Scholar 

  • James, B. R., Petura, J. C., Vitale, R. J., & Mussoline, G. R. (1995). Hexavalent chromium extraction from soils: A comparison of five methods. Environmental Science & Technology, 29, 2377–2381. doi:10.1021/es00009a033.

    Article  CAS  Google Scholar 

  • Kim, C., Zhou, Q., Deng, B., Thornton, E. C., & Xu, H. (2001). Chromium(VI) reduction by hydrogen sulfite in aqueous media: Stoichiometry and kinetics. Environmental Science & Technology, 35, 2219–2225. doi:10.1021/es0017007.

    Article  CAS  Google Scholar 

  • Kimbrough, D. E., Cohen, Y., Winer, A. M., Creelman, L., & Mabuni, C. (1999). A Critical assessment of chromium in the environment. Critical Reviews in Environmental Science and Technology, 29(1), 1–46. doi:10.1080/10643389991259164.

    Article  CAS  Google Scholar 

  • Levenspiel, O. (1999). Chemical reaction engineering (3rd ed.). New York: Wiley.

    Google Scholar 

  • Levenspiel, O. (2002). Modelling in chemical engineering. Chemical Engineering Science, 57, 4691–4696. doi:10.1016/S0009-2509(02)00280-4.

    Article  CAS  Google Scholar 

  • Li, L., Fan, M., Brown, R. C., Van Leeuwen, J. H., Wang, J., Wang, W., Song, Y., & Zhang, P. (2006). Synthesis, properties, and environmental applications of nanoscale iron-based materials: A review. Critical Reviews in Environmental Science and Technology, 36, 405–431. doi:10.1080/10643380600620387.

    Article  CAS  Google Scholar 

  • Melitas, N., Chuffe-Moscoso, Q., & Farrell, J. (2001). Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: Corrosion inhibition and passive oxide effects. Environmental Science & Technology, 35, 3948–3953. doi:10.1021/es001923x.

    Article  CAS  Google Scholar 

  • Palmer, C. D., & Wittbrodt, P. R. (1991). Processes affecting the remediation of chromium-contaminated sites. Environmental Health Perspectives, 92, 25–40. doi:10.2307/3431134.

    Article  CAS  Google Scholar 

  • Ponder, S. M., Darab, J. G., & Mallouk, T. E. (2000). Remediation of Cr(VI) e Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology, 34(12), 2564–2569. doi:10.1021/es9911420.

    Article  CAS  Google Scholar 

  • Rai, D., Eary, L. E., & Zacara, L. M. (1989). Environmental chemistry of chromium. The Science of the Total Environment, 86, 15–23. doi:10.1016/0048-9697(89)90189-7.

    Article  CAS  Google Scholar 

  • Schrick, B., Hydutsky, B. W., Blough, J. L., & Mallouk, T. E. (2004). Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 16(11), 2187–2193. doi:10.1021/cm0218108.

    Article  CAS  Google Scholar 

  • Seaman, J. C., Bertsch, P. M., & Schwallie, L. (1999). In situ Cr(VI) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe(II) solutions. Environmental Science & Technology, 33(6), 938–944. doi:10.1021/es980546+.

    Article  CAS  Google Scholar 

  • Stanin, F. T. (2005). The transport and fate of chromium(VI) in the environment. In J. Guertin, J. A. Jacobs, & C. P. Avakian (Eds.), Cr(VI) handbook (pp. pp. 156–214). New York: CRC.

    Google Scholar 

  • Su, C., & Ludwig, R. D. (2005). Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite. Environmental Science & Technology, 39(16), 6208–6216. doi:10.1021/es050185f.

    Article  CAS  Google Scholar 

  • Thornton, E. C., & Amonette, J. E. (1999). Hydrogen sulfide gas treatment of Cr(VI)-contaminated sediment samples from a plating-waste disposal site—Implications for in-situ remediation. Environmental Science & Technology, 33, 4095–4101. doi:10.1021/es9812507.

    Article  Google Scholar 

  • Xu, Y., & Zhang, W. X. (2000). Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes. Industrial & Engineering Chemistry Research, 39, 2238–2244. doi:10.1021/ie9903588.

    Article  CAS  Google Scholar 

  • Xu, Y., & Zhao, D. (2007). Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Research, 41, 2101–2108. doi:10.1016/j.watres.2007.02.037.

    Article  CAS  Google Scholar 

  • Xu, X. R., Li, H. B., Li, X. Y., & Gu, J. D. (2004). Reduction of hexavalent chromium by ascorbic acid in aqueous solution. Chemosphere, 57, 609–613. doi:10.1016/j.chemosphere.2004.07.031.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Scientific Council for Research and Development—CNPq (process no. 141024/2005-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Débora V. Franco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franco, D.V., Da Silva, L.M. & Jardim, W.F. Chemical Reduction of Hexavalent Chromium and Its Immobilisation Under Batch Conditions Using a Slurry Reactor. Water Air Soil Pollut 203, 305–315 (2009). https://doi.org/10.1007/s11270-009-0013-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0013-0

Keywords

Navigation