Skip to main content

Advertisement

Log in

Heavy Metal Pollution in Soils Around the Abandoned Mine Sites of the Iberian Pyrite Belt (Southwest Spain)

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

This paper investigates the pollution load of selected trace elements in 32 soil samples collected around 21 different mining areas of the Iberian Pyrite Belt (Southwest Spain), integrating chemical data with soil parameters to help understand the partitioning and mobility of pollutants. The minesoils are depleted in acid neutralising minerals and show limiting physicochemical properties, including low pH values and very high anomalies of potentially hazardous metals. The total concentrations of As (up to 1,560 mg kg−1) and certain heavy metals (up to 2,874 mg kg−1 Cu, 6,500 mg kg−1 Pb, 6,890 mg kg−1 Zn, 62 mg kg−1 Hg and 22 mg kg−1 Cd) are two orders of magnitude above the soil background values. The close association of Cd and Zn with the carbonate content in lime-amended minesoils suggests metal immobilisation through adsorption and/or co-precipitation mechanisms, after acid neutralisation, whereas As and Pb are similarly partitioned into the soil and mostly associated with iron oxy-hydroxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aguilar, J., Dorronsoro, C., Gómez-Ariza, J. L., & Galán, E.(1999). Los criterios y estándares para declarar un suelo contaminado en Andalucía y la metodología y técnicas de toma de muestras y análisis para su investigación. Consejería de Medio Ambiente. Junta de Andalucía. http://www.juntadeandalucia.es/medioambiente/site/web.

  • Alloway, B. J. (1995). Heavy metals in soil (2nd ed.). London: Blackie Academic & Professional.

    Google Scholar 

  • Aslibekian, O., & Moles, R. (2003). Environmental risk assessment of metals contaminated soils at Silvermines abandoned mine site, Ireland. Environmental Geochemistry and Health, 25, 247–266. doi:10.1023/A:1023251102402.

    Article  CAS  Google Scholar 

  • Barba, C., Fernández-Caliani, J. C., & Galán, E. (2005). Evaluación de la contaminación potencial por elementos tóxicos relacionados con la minería de la pirita en la provincia de Huelva. 6th Iberian/3th Iberoamerican Congress of Environmental Contamination and Toxicology p. 63. Cádiz (Spain): Book of Abstracts.

    Google Scholar 

  • Barriga, F. J. A. S. (1990). Metallogenesis in the Iberian Pyrite Belt. In R. D. Dallmeyer, & E. Martinez-Garcia (Eds.), Pre-mesozoic geology of Iberia (pp. 369–379). Berlin: Springer-Verlag.

    Google Scholar 

  • Barriga, F. J. A. S., & Carvalho, D. (1997). Geology and VMS Deposits of the Iberian Pyrite Belt. Neves Corvo Field Conference 1997. Society Economic Geologists, Guidebook Series, 27.

  • Batista, M. J., Abreu, M. M., & Serrano, M. (2007). Biogeochemistry in Neves-Corvo mining area, Iberian Pyrite Belt, Portugal. Journal of Geochemical Exploration, 92, 159–176. doi:10.1016/j.gexplo.2006.08.004.

    Article  CAS  Google Scholar 

  • Cánovas, C. R., Olías, M., Nieto, J. M., Sarmiento, A. M., & Cerón, J. C. (2007). Hydrogeochemical characteristics of the Tinto and Odiel rivers (SW Spain): factors controlling metal contents. The Science of the Total Environment, 373, 363–32. doi:10.1016/j.scitotenv.2006.11.022.

    Article  CAS  Google Scholar 

  • Carson, C. D., Fanning, D. S., & Dixon, J. B. (1982). Alfisols and Ultisols with acid sulfate weathering features in Texas. In J. A Kittrick, D. S Fanning, L. R. Hossner (Eds.), Acid sulfate weathering (pp. 127–146). Special Publication. Soil Science Society of America.

  • Carvalho, D. (1979). Geologia, metalogenia e metodologia da investigação de sulfuretos polimetálicos do Sul de Portugal. Comunicaçoes dos Serviços Geológicos de Portugal, 65, 169–191.

    Google Scholar 

  • Carvalho, D., Barriga, F. J. A. S., & Munhá, J. (1999). The Iberian Pyrite Belt of Portugal and Spain: examples of bimodal siliciclastic systems. Reviews in Economic Geology, 8, 385–418.

    Google Scholar 

  • Chopin, E. I. B., & Alloway, B. J. (2007a). Trace element partitioning and soil particle characterisation around mining and smelting areas at Tharsis, Riotinto and Huelva, SW Spain. The Science of the Total Environment, 373, 488–500. doi:10.1016/j.scitotenv.2006.11.037.

    Article  CAS  Google Scholar 

  • Chopin, E. I. B., & Alloway, B. J. (2007b). Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Riotinto and Huelva, Iberian Pyrite Belt, SW Spain. Water, Air, and Soil Pollution, 182, 245–261. doi:10.1007/s11270-007-9336-x.

    Article  CAS  Google Scholar 

  • Chopin, E. I. B., Black, S., Hodson, M. E., Coleman, M. L., & Alloway, B. J. (2003). A preliminary investigation into mining and smelting impacts on trace element concentrations in the soils and vegetation around Tharsis, SW Spain. Mineralogical Magazine, 67, 279–288. doi:10.1180/0026461036720099.

    Article  CAS  Google Scholar 

  • FAO (1999). World Reference Base for Soil Resources (2nd ed.). World Soil Resources. Roma: Report 103.

  • Fernández-Caliani, J. C., & Galán, E. (1996). Impacto ambiental de la minería en el devenir histórico de la comarca de Riotinto (Huelva). Geogaceta, 20, 1168–1169.

    Google Scholar 

  • Fernández-Caliani, J. C., González, I., Aparicio, P., Barba, C., & Galán, E. (2005). Niveles de concentración de arsénico y metales pesados en los suelos del entorno de las minas abandonas de la Faja Pirítica Ibérica. Macla, 3, 73–74.

    Google Scholar 

  • Ferreira, E., Cardoso, E., Matos, J. X., Patinha, C., Reis, P., & Santos, J. M. (2005). The effect of unconfined mine tailings on the geochemistry of soils, sediments and surface waters of the lousal area (Iberian Pyrite Belt, Southern Portugal). Land Degradation and Development, 16, 213–228. doi:10.1002/ldr.659.

    Article  Google Scholar 

  • Galán, E., Carretero, M. I., & Fernández-Caliani, J. C. (1999). Effects of acid mine drainage on clay minerals suspended in the Tinto river (Río Tinto, Spain). An experimental approach. Clay Minerals, 34, 99–108. doi:10.1180/000985599546118.

    Article  Google Scholar 

  • Galán, E., Gómez-Ariza, J. L., González, I., Fernández-Caliani, J. C., Morales, E., & Giráldez, I. (2003). Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Applied Geochemistry, 18, 409–421. doi:10.1016/S0883-2927(02)00092-6.

    Article  Google Scholar 

  • Galán, E., Fernández-Caliani, J. C., González, I., Aparicio, P., & Romero, A. (2008). Influence of geological setting on geochemical baselines of trace elements in soils. Application to soils of Southwest Spain. Journal of Geochemical Exploration, 98, 89–106. doi:10.1016/j.gexplo.2008.01.001.

    Google Scholar 

  • Haering, K. C., Daniels, W. L., & Galbraith, J. M. (2004). Appalachian mine soil morphology and properties: effects of weathering and mining method. Soil Science Society of America Journal, 68, 1315–1325.

    Article  CAS  Google Scholar 

  • Hudson-Edwards, K., Schell, C., & Macklin, M. G. (1999). Mineralogy and geochemistry of alluvium contaminated by metal mining in the Río Tinto area, southwest Spain. Applied Geochemistry, 14, 1015–1030. doi:10.1016/S0883-2927(99)00008-6.

    Article  CAS  Google Scholar 

  • IGME (1982). Síntesis Geológica de la Faja Pirítica del SO de España. Ministerio de Industria y Energía p. 98. Madrid: Colección Memorias.

    Google Scholar 

  • Jackson, T. A. (1998). The biochemical and ecological significance of interactions between colloidal minerals and trace elements. In A. Parker & J. E. Rae (Eds.), Environmental interactions of clays (pp. 93–205). Berlin: Springer.

    Google Scholar 

  • Junta de Andalucía (2004). Estudio de Elementos Traza en Suelos de Andalucía. Consejería de Medio Ambiente. Junta de Andalucía. http://www.juntadeandalucia.es/medioambiente/site/web.

  • Leistel, J. M., Marcoux, E., Thiéblemont, D., Quesada, C., Sánchez, A., & Almodóvar, G. R. (1998). The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Mineralium Deposita, 33, 2–30. doi:10.1007/s001260050130.

    Article  CAS  Google Scholar 

  • Li, X., & Thornton, I. (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706. doi:10.1016/S0883-2927(01)00065-8.

    Article  CAS  Google Scholar 

  • López, M., & Grau, J. M. (2005). Metales Pesados, Materia Orgánica y otros Parámetros de la Capa Superficial de los Suelos Agrícolas y de Pastos de la España Peninsular. Madrid: Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria.

    Google Scholar 

  • López, M., González, I., & Romero, A. (2008). Trace elements contamination of agricultural soils affected by sulphide exploitation (Iberian Pyrite Belt, SW Spain). Environmental Geology, 54, 805–818. doi:10.1007/s00254-007-0864-x.

    Article  CAS  Google Scholar 

  • López-Pamo, E., Barettino, D., Antón-Pacheco, C., Ortíz, G., Arranz, J. C., & Gumiel, J. C. (1999). The extent of the Aznalcóllar pyritic sludge spill and its effects on soils. The Science of the Total Environment, 242, 57–88. doi:10.1016/S0048-9697(99)00376-9.

    Article  Google Scholar 

  • McBride, M. B. (1991). Processes of heavy and transition metal sorption by soil minerals. In G. H. Bolt, M. F. De Boodt, M. H. B. Hayes, M. B. McBride & E. B. A. De Strooper (Eds.), Interactions at the soil-colloid-soil solution interface (pp. 149–175). Dordrecht: Kluwer.

    Google Scholar 

  • Mehra, O. P., & Jackson, M. L. (1960). Iron oxides removal from soils and clays by dithionite–citrate–bicarbonate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317–327. doi:10.1346/CCMN.1958.0070122.

    Article  Google Scholar 

  • Neel, C., Bril, H., Courtin-Nomade, A., & Dutreuil, J. P. (2003). Factors affecting natural development of soil on 35-year-old sulphide-rich mine tailings. Geoderma, 111, 1–20. doi:10.1016/S0016-7061(02)00237-9.

    Article  CAS  Google Scholar 

  • Nelson, C. H., & Lamothe, P. J. (1993). Heavy metal anomalies in the Tinto and Odiel river and estuary system, Spain. Estuaries, 16, 496–511. doi:10.2307/1352597.

    Article  CAS  Google Scholar 

  • Olías, M., Cánovas, C. R., Nieto, J. M., & Sarmiento, A. M. (2006). Evaluation of the dissolved contaminant load transported by the Tinto and Odiel rivers (South West Spain). Applied Geochemistry, 21, 1733–1749. doi:10.1016/j.apgeochem.2006.05.009.

    Article  CAS  Google Scholar 

  • Pinedo, I. (1963). Piritas de Huelva. Su Historia, Minería y Aprovechamiento. Madrid: Summa.

    Google Scholar 

  • Quesada, C., Bellido, F., Dallmeyer, R. D., Gil-Ibarguchi, J. I., Oliveira, J. T., & Pérez-Estaun, A. (1991). Terranes within the Iberian Massif: Correlations with West African sequences. In R. D. Dallmeyer & J. P. Lécorché (Eds.), The West African orogens and circum-Atlantic correlations (pp. 267–293). Berlin: Springer.

    Google Scholar 

  • Reimann, C., & De Caritat, P. (1998). Chemical elements in the environment. Berlin: Springer.

    Google Scholar 

  • Rivas-Martínez, S., Penas, A., & Díaz, T. E.(2004). Bioclimatic map of Europe. Cartographic service. University of León, Spain. http://www.globalbioclimatics.org/form/maps.htm.

  • Rodríguez, N., Amils, R., Jiménez-Ballesta, R., Rufo, L., & De la Fuente, V. (2007). Heavy metal content in Erica andevalensis: an endemic plant from the extreme acidic environment of Tinto river and its soils. Arid Land Research and Management, 21, 51–65. doi:10.1080/15324980601074578.

    Article  CAS  Google Scholar 

  • Routhier, P., Aye, F., Boyer, C., Lecolle, M., Moliere, P., Picot, P., et al. (1980). Le Ceinture Sud-Iberique a Amas Sulfures dans sa Partie Espagnole Mediane. Mémoires du BRGM, 94.

  • Rufo, L., Rodríguez, N., Amils, R., De La Fuente, V., & Jiménez-Ballesta, R. (2007). Surface geochemistry of soils associated to the Tinto river (Huelva, Spain). The Science of the Total Environment, 378, 223–227. doi:10.1016/j.scitotenv.2007.01.051.

    Article  CAS  Google Scholar 

  • Sáez, R., Almodóvar, G. R., & Pascual, E. (1996). Geological constraints on massive sulphide genesis in the Iberian Pyrite Belt. Ore Geology Reviews, 11, 429–451. doi:10.1016/S0169-1368(96)00012-1.

    Article  Google Scholar 

  • Sáez, R., Pascual, F., Toscano, M., & Almodóvar, G. R. (1999). The Iberian type of volcano-sedimentary massive sulphide deposits. Mineralium Deposita, 34, 549–570. doi:10.1007/s001260050220.

    Article  Google Scholar 

  • Sáinz, A., Grande, J. A., & De La Torre, M. L. (2003). Analysis of the impact of local corrective measures on the input of contaminants from the Odiel river to the Ría of Huelva. Water, Air, and Soil Pollution, 144, 375–389. doi:10.1023/A:1022905502320.

    Article  Google Scholar 

  • Salkield, L. U. (1987). A technical history of the Rio Tinto Mines. Some Notes on exploitation from Pre-Phoenician times to the 1950s. London: Institution of Mining and Metallurgy.

    Google Scholar 

  • Salminen, R. (2005). Geochemical Atlas of Europe. Part 1: Background Information, Methodology and Maps. Geological Survey of Finland. http://www.gtk.fi/publ/foregsatlas.

  • Sánchez-España, J., López-Pamo, E., Santofimia, E., Aduvire, O., Reyes, J., & Barettino, D. (2005). Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Applied Geochemistry, 20, 1320–1356. doi:10.1016/j.apgeochem.2005.01.011.

    Article  CAS  Google Scholar 

  • Sencindiver, J. C., & Ammons, J. T. (2000). Minesoil genesis and classification. In: R. I. Barnhisel, R. G. Darmody, W. L. Daniels (Eds.), Reclamation of drastically disturbed lands. American Society of Agronomy, Agronomy Series, 41.

  • Serrano, J., Viñas, L., & López, A. J. (1995). Proyecto de regeneración de los ríos Tinto y Odiel (Huelva). Tecnoambiente, 53, 53–56.

    Google Scholar 

  • Soil Survey Staff (1999). Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys (p. 436, 2nd ed.). USDA-NRCS, Washington DC: Agriculture Handbook.

    Google Scholar 

  • Strauss, G. K., & Madel, J. (1974). Geology of massive sulphide deposits in the Spanish Portuguese Pyrite Belt. Geologische Rundschau, 63, 191–211.

    Article  CAS  Google Scholar 

  • Thornton, I. (1996). Impacts of mining on the environment: some local, regional and global issues. Applied Geochemistry, 11, 355–361.

    Article  CAS  Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessments of heavy metal levels in estuaries and formation of a pollution index. Helgol Meeresunters, 33, 566–575.

    Article  Google Scholar 

  • Tornos, F. (2006). Environment of formation and styles of volcanogenic massive sulfides: the Iberian Pyrite Belt. Ore Geology Reviews, 28, 259–307.

    Article  Google Scholar 

  • Vega, F. A., Covelo, E. F., Andrade, M. L., & Marcet, P. (2004). Relationships between heavy metals content and soil properties in minesoils. Analytica Chimica Acta, 524, 141–150.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The results presented in this paper were obtained in the framework of a Survey on Trace Element Concentrations in Soils of Andalusia financially supported by the Regional Government of Andalusia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Fernández-Caliani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Caliani, J.C., Barba-Brioso, C., González, I. et al. Heavy Metal Pollution in Soils Around the Abandoned Mine Sites of the Iberian Pyrite Belt (Southwest Spain). Water Air Soil Pollut 200, 211–226 (2009). https://doi.org/10.1007/s11270-008-9905-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9905-7

Keywords

Navigation