Skip to main content

Advertisement

Log in

Microbial Communities in Long-Term Heavy Metal Contaminated Ombrotrophic Peats

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

High concentrations of heavy metals are known to be toxic to many soil organisms. The effects of long-term exposure to lower levels of metals on the soil microbial community are, however, less well understood. The southern Pennines of the U.K. are characterised by expanses of ombrotrophic peat soils that have experienced deposition of high levels of heavy metals since the mid to late 1800s. Concentrations of metals in the peat remain high but the effect of the contamination on the in-situ microbial communities is unknown. Geochemical and molecular polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and sequencing techniques were used to derive new information on the metal chemistry and microbial populations in peat soils from six locations in the southern Pennines. All sites were highly acidic (pH 3.00–3.14) with high concentrations of potentially toxic heavy metals, particularly porewater Zn and particulate-associated Pb. The results also reveal a split in site characteristics between the most polluted sites with the highest levels of bioavailable metals (Bleaklow, FeatherBed Moss and White Hill) and those with much lower bioavailable metals (Cowms Moor, Holme Moss and Round Hill). There was no difference in the number of dominant bacterial species between the sites but there were significant differences in the species composition. At the three sites with the highest levels of bioavailable metals, bacterial species with a high similarity to acidophilic sulphur- and iron-oxidizing bacteria and those from high metal environments were detected. The transformations carried out by these metal mobilising and acid producing bacteria may make heavy metals more bioavailable and therefore more toxic to higher organisms. Bacteria with similarity to those typically found in forest and grassland soils were documented at the three sites with the lowest levels of bioavailable metals. The data highlight the need for further studies to elucidate the species diversity and functionality of bacteria in heavy metal contaminated peats in order to assess implications for moorland restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  • Alexander, B., Leach, S., & Ingledew, W. J. (1987). The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferroxidans. Journal of General Microbiology, 133, 1171–1179.

    CAS  Google Scholar 

  • Ashmore, M. R., Fawehinmi, J., Hill, M., Hall, J., Jordan, C. Lofts, S., et al. (2004). Further development of an effects based approach for cadmium, copper, lead and zinc. Final report to Defra, EPG 1/3/188. (pp 1–126). www.airquality.co.uk/archive/netcen/airqual/reports, www.airquality.co.uk/archive/reports/cat10/0505201123_EPG1_3_188_metal_critical_loads_final_report.pdf.

  • Avidano, L., Gamalero, E., Cossa, G. P., & Carraro, E. (2005). Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Applied Soil Ecology, 30, 21–33.

    Article  Google Scholar 

  • Axelrood, P. E., Chow, M. L., Arnold, C. S., Lu, K., McDermott, J. M., & Davies, J. (2002). Cultivation-dependent characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. Canadian Journal of Microbiology, 48, 643–654.

    Article  CAS  Google Scholar 

  • Baath, E. (1992). Effect of heavy metals in soil on microbial processes and populations. Water Pollution, 47, 335–379.

    Article  Google Scholar 

  • Baker, S. J. (2001). Trace and Major Elements in the Atmosphere at Rural Locations in the UK: Summary of data for 1999. AEA Technology Environment, Abingdon.

  • Benlloch, S., Martinez-Murcia, A. J., & Rogriguez-Valera, F. (1995). Sequencing of bacterial and archeal 16S rDNA genes directly amplified from hypersaline environment. Systematic and Applied Microbiology, 18, 574–581.

    Google Scholar 

  • Brofft, J. E., McArthur, J. V., & Shimkets, L. J. (2002). Recovery of novel bacterial diversity from a forested wetland impacted by reject coal. Environmental Microbiology, 4, 764–769.

    Article  CAS  Google Scholar 

  • Brookes, P. C. (1995). The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, 19, 269–279.

    Article  CAS  Google Scholar 

  • Brookes, P. C., & McGrath, S. P. (1984). Effects of metal toxicity on the size of the soil microbial biomass. Journal of Soil Science, 35, 341–346.

    Article  CAS  Google Scholar 

  • Campbell, P. G. C. (1995). Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model. In A. Tessier & D. R. Turner (Eds.) Metal Speciation and Bioavailability in Aquatic Systems (pp. 45–102). John Wiley & Sons Ltd.

  • Chander, K., & Brookes, P. C. (1991). Effect of heavy metals from past application on microbial biomass and organic matter accumulation in a study loam UK soil. Soil Biology and Biochemistry, 29, 927–932.

    Article  Google Scholar 

  • Chaudri, A. M., McGrath, S. P., Giller, K. E., Rietz, E., & Sauerbeck, D. R. (1993). Enumeration of indigenous Rhizobium leguminosarum biovar trifolii in soils previously treated with metal-contaminated sewage sludge. Soil Biology and Biochemistry, 25, 301–309.

    Article  CAS  Google Scholar 

  • Chaudri, A. M., Knight, B. P., Barbosa-Jefferson, V. L., Preston, S., Paton, G. I., Killham, K., et al. (1999). Determination of acute Zn toxicity in pore water in soils previously treated with sewage sludge using bioluminescence assays. Environmental Science and Technology, 33, 1880–1885.

    Article  CAS  Google Scholar 

  • Chow, M. L. R., Radomski, C. C., McDermott, J. M., Davies, J., & Axelrood, P. E. (2002). Molecular characterization of bacterial diversity in Lodgepole pine (Pinus contorta) rhizosphere soils from British Columbia forest soils differing in disturbance and geographic source. FEMS Microbiology Ecology, 42, 347–357.

    Article  CAS  Google Scholar 

  • Cresswell, N., Herron, P. R., Saunders, V. A., & Wellington, E. M. H. (1992). The fate of introduced streptomycetes, plasmid and phage populations in a dynamic soil system. Journal of General Microbiology, 138, 659–666.

    CAS  Google Scholar 

  • Dedysh, S. N., Pankratov, T. A., Belova, S. E., Kulichevskaya, I. S., & Liesack, W. (2006). Phylogenetic analysis and in situ identification of bacterial community composition in an acidic sphagnum peat bog. Applied and Environmental Microbiology, 72, 2110–2117.

    Article  CAS  Google Scholar 

  • Dedysh, S. N., Pankratov, T. A., & Tiedje, J. M. (1998). Acidophilic methanotrophic communities from Sphagnum peat bogs. Applied and Environmental Microbiology, 64, 922–929.

    CAS  Google Scholar 

  • DEFRA (2002). Soil guideline values for lead contamination. Published by Environment Agency, Bristol. www.environment-agency.gov.uk/commondata/acrobat/sgv10_lead_676098.pdf.

  • DEFRA (2006). E-Digest Statistics. www.defra.gov.uk/environment/statistics/airqual/aqsulphurd.htm.

  • Dell’Amico, E., Mazzocchi, M., Cavalca, L., Allievi, L., & Andreoni, V. (2007). Assessment of bacterial community structure in long-term copper polluted ex-vineyard soil. Microbiological Research (in press).

  • Dickinson, N. M., Hartley, W., Uffindell, L. A., Plumb, A. N., Rawlinson, H., & Putwain, P. (2005). Robust biological descriptors of soil health for use in reclamation of brownfield land. Land Contamination and Reclamation, 13, 1–10.

    Article  Google Scholar 

  • Ellis, R. J., Neish, B., Trett, M. W., Best, J. G., Weightman, A. J., Morgan, P. et al. (2001). Comparison of microbial and meiofaunal community analyses for determining impact of heavy metal contamination. Journal of Microbiological Methods, 45, 171–185.

    Article  CAS  Google Scholar 

  • Engel, A. S., Porter, M. L., Stern, L. A., Quinlan, S., & Bennett, P. C. (2004). Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic “Epsilonproteobacteria”. FEMS Microbiology Ecology, 51, 31–53.

    Article  CAS  Google Scholar 

  • Evans, C. D., & Jenkins, A. (2000). Surface water acidification in the South Pennines II. Temporal trends. Environmental Pollution, 109, 21–34.

    Article  CAS  Google Scholar 

  • Fliessbach, A., Martens, R., & Reber, H. H. (1994). Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge. Soil Biology and Biochemistry, 26, 1201–1205.

    Article  Google Scholar 

  • Forney, L. J., Zhou, X., & Brown, C. J. (2004). Molecular microbial ecology: Land of the eon-eyed king. Current Opinion in Microbiology, 7, 210–220.

    Article  CAS  Google Scholar 

  • Frostegard, A., Tunlid, A., & Baath, E. (1996). Changes in microbial community structure during long term incubation in two soils experimentally contaminated with metals. Soil Biology and Biochemistry, 28, 55–63.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2004). Microbial influence on metal mobility and application for bioremediation. Geoderma, 122, 109–119.

    Article  CAS  Google Scholar 

  • Gilbertson, D. D., Grattan, J. P., Cressey, M., & Pyatt, F. B. (1997). An air-pollution history of metallurgical innovation in iron- and steel-making: A geochemical archive of Sheffield. Water, Air, and Soil Pollution, 100, 327–342.

    Article  CAS  Google Scholar 

  • Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology and Biochemistry, 30, 1389–1414.

    Article  CAS  Google Scholar 

  • Green, N. J. L., Jones, J. L., Johnson, A. E., & Jones, K. E. (2001). Further evidence for the existence of PCPP/Fs in the environment prior to 1990. Environmental Science and Technology, 35, 1974–1981.

    Article  CAS  Google Scholar 

  • Hackl, E., Zechmeister-Boltenstern, S., Bodrossy L., & Sessitsch, A. (2004). Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Applied and Environmental Microbiology, 70, 5057–5065.

    Article  CAS  Google Scholar 

  • Hales, B. A., Edwards, C., Richie, D. A., Hall, G., Pickup, R. W., & Saunders, J. R. (1996). Isolation and identification of methanogen-specific DNA from blanket bog peat using PCR amplification and sequence analysis. Applied and Environmental Microbiology, 62, 668–675.

    CAS  Google Scholar 

  • Hall, J., Ashmore, M. R., Fawehinimi, J., Lofts, S., Shotbolt, L., Spurgeon, D., et al. (2006). Developing a critical load approach for national risk assessments of atmospheric metal deposition. Environmental Toxicology and Chemistry, 25, 883–891.

    Article  CAS  Google Scholar 

  • Heiri, O., Lotter, A. F., & Lemeke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110.

    Article  Google Scholar 

  • Herrera, A., Hery, M., Stach, J. E. M., Jaffre, T., Normand, P., & Navarro, E. (2007). Species richness and phylogenetic diversity comparisons of soil microbial communities affected by nickel-mining and revegetation efforts in New Caledonia. European Journal of Soil Biology, 43, 130–139.

    Article  CAS  Google Scholar 

  • Hoekstra, E., Weerd, H., de Leer, E., & Brinkman, U. (1999). Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soil of a Douglas fir forest. Environmental Science and Technology, 33, 2543–2549.

    Article  CAS  Google Scholar 

  • Hollibaugh, J. T., Budinoff, C., Hollibaugh, R. A., & Bano, N. (2006). Sulfide oxidation coupled to arsenate reduction by a diverse microbial community in a soda lake. Applied and Environmental Microbiology, 72, 2043–2049.

    Article  CAS  Google Scholar 

  • Johnson, D. B. (1998). Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiology Ecology, 27, 307–317.

    Article  CAS  Google Scholar 

  • Jones, J. M., & Hao, J. (1993). Ombrotrophic peat as a medium for historical monitoring of heavy metal pollution. Environmental Geochemistry and Health, 15, 67–74.

    Article  CAS  Google Scholar 

  • Kaneko, T., Nakamura, Y., Sato, S., Minamisawa, K., Uchiumi, T., Sasamoto, S. et al. (2002). Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Research, 9, 189–197.

    Article  Google Scholar 

  • Kelly, J. J., Haggblom, M., & Tate III, R. L. (1999). Changes in soil diversity among homologous populations of amplification microbial communities over time resulting from one application of zinc: A laboratory microcosm study. Soil Biology and Biochemistry, 31, 1455–1465.

    Article  CAS  Google Scholar 

  • Lee, J. A., & Tallis, J. H. (1973). Regional and historical aspects of lead pollution in Britain. Nature, 245, 216–218.

    Article  CAS  Google Scholar 

  • Leduc, L. G., & Ferroni, G. D. (1994). The chemolithotrophic bacterium Thiobacillus ferroxidans. FEMS Microbiology Reviews, 14, 103–120.

    Article  CAS  Google Scholar 

  • Li, Z., Xu, J., Tang, C., Wu, J., Muhammad, A., & Wang, H. (2006). Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shifts in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils. Chemosphere, 62, 1374–1380.

    Article  CAS  Google Scholar 

  • Liu, W. T., Marsh, T. L., Cheng, H., & Forney, L. J. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology, 63, 4516–4522.

    CAS  Google Scholar 

  • Livett, E. A., Lee, J. A., & Tallis, J. H. (1979). Lead, zinc and copper analyses of British blanket peats. Journal of Ecology, 67, 865–891.

    Article  CAS  Google Scholar 

  • Lofts, S., Spurgeon, D. J., Svendsen, C., & Tipping, E. (2004). Deriving soil critical limits for Cu, Zn, Cd, and Pb: A method based on free ion concentrations. Environmental Science and Technology, 38, 3623–3631.

    Article  CAS  Google Scholar 

  • Macalady, J. L., Jones, D. S., & Lyon, E. H. (2007). Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system, Italy. Environmental Microbiology, 9, 1402–1414.

    Article  CAS  Google Scholar 

  • MacKenzie, A. B., Logan, E. M., Cook, G. T., & Pulford, I. D. (1998). A historical record of atmospheric depositional fluxes of contaminants in west-central Scotland derived from an ombrotrophic peat core. Science of the Total Environment, 222, 157–166.

    Article  CAS  Google Scholar 

  • Malawska, M., Ekonomiuk, A., & Wilkomirski, B. (2006). Polycyclic aromatic hydrocarbons in peat cores from Southern Poland: Distribution in stratigraphic profiles as an indicator of PAH sources. Mires and Peat, 1, 1–13.

    Google Scholar 

  • McCaig, A. E., Glover, L. A., & Prosser, J. I. (1999). Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Applied and Environmental Microbiology, 65, 1721–1730.

    CAS  Google Scholar 

  • McDonald, I. R., Upton, M., Hall, G., Pickup, R. W., Edwards, C., Saunders, J. R. et al. (1999). Molecular ecological analysis of methanogens and methanotrophs in blanket bog peat. Microbial Ecology, 38, 225–233.

    Article  CAS  Google Scholar 

  • McGrath, S. P., Brookes, P. C., & Giller, K. E. (1988). Effects of potentially toxic metals in soil derived from past applications of sewage sludge on nitrogen fixation by Trifolium repens L. Soil Biology and Biochemistry, 20, 415–424.

    Article  CAS  Google Scholar 

  • Martin, M. H., Coughtrey, P. J., & Ward, P. (1979). Historical aspects of heavy metal pollution in the Gordano Valley. Proceedings of the Bristol Naturalists Society, 37, 91–97.

    Google Scholar 

  • Mench, M., Renella, G., Gelsomino, A., Landi, L., & Nannipieri, P. (2006). Biochemical parameters and bacterial species richness in soils contaminated by sludge-borne metals and remediated with inorganic soil amendments. Environmental Pollution, 144, 24–31.

    Article  CAS  Google Scholar 

  • Moors for the Future (2006). Air Pollution in the Peak District. Research Note No. 9. www.moorsforthefuture.org.uk/mftf/downloads/publications/MFF_researchnote9_airpollution.pdf.

  • Morales, S. M., Mouser, P. J., Ward, N., Hudman, S. P., Gotelli, N. J., Ross, D. S. et al. (2006). Comparison of bacterial communities in New England Sphagnum bogs using terminal restriction fragment length polymorphism (T-RFLP). Microbial Ecology, 52, 34–44.

    Article  CAS  Google Scholar 

  • Pennanen, T. (2001). Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH – a summary of the use of phospholipid fatty acids, Biolog and 3H-thymidine incorporation methods in field studies. Geoderma, 100, 91–126.

    Article  CAS  Google Scholar 

  • Proctor, M. C. F. (2006). Temporal variation in the surface-water chemistry of a blanket bog on Dartmoor, Southwest England; analysis of 5 years’ data. European Journal of Soil Science, 57, 167–178.

    Article  CAS  Google Scholar 

  • Proctor, M. C. F., & Maltby, E. (1998). Relations between acid atmospheric deposition and the surface pH of some ombrotrophic bogs in Britain. Journal of Ecology, 86, 329–340.

    Article  CAS  Google Scholar 

  • Rothwell, J. J., Robinson, S. G., Evans, M. G., Yang, J., & Allott, T. E. H. (2005). Heavy metal release by peat erosion in the Peak District, southern Pennines, UK. Hydrological Processes, 19, 2973–2989.

    Article  CAS  Google Scholar 

  • Rothwell, J. J., Allott, T. E. H., & Evans, M. G. (2006). Sediment-water interactions in an eroded and heavy metal contaminated peatland catchment, southern Pennines, UK. Water Air and Soil Pollution. doi:10.1007/s11267-006-9052-3.

  • Rothwell, J. J., Evans, M. G., Lindsay, J. B., & Allott, T. E. H. (2007). Scale-dependent spatial variability in peatland lead pollution in the southern Pennines, UK. Environmental Pollution, 145, 111–120.

    Article  CAS  Google Scholar 

  • Sait, M., Davis, K. E. R., & Janssen, P. H. (2006). Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Applied and Environmental Microbiology, 72, 1852–1857.

    Article  CAS  Google Scholar 

  • Sandaa, R.-A., Torsvik, V., Enger, Ø., Daae, F. L., Castberg, T., & Hahn, D. (1999). Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiology Ecology, 30, 237–251.

    Article  CAS  Google Scholar 

  • Sauvé, S. A., Dumester, M., McBride, M., & Hendershot, W. (1998). Derivation of soil quality criteria using predicted chemical speciation of Pb2+ and Cu2+. Environmental Toxicology and Chemistry, 17, 1481–1489.

    Article  Google Scholar 

  • Schloter, M., Dilly, O., & Munch, J. C. (2003). Indicators for evaluating soil quality. Agriculture, Ecosystems and Environment, 98, 255–262.

    Article  Google Scholar 

  • Shotbolt, L., & Ashmore, M. R. (2004). Dissolved organic carbon concentrations in UK soils. In: Annexes to the final report to Defra EPG 1/3/188. www.airquality.co.uk/archive/reports/cat10/0505201123_Heavy_metals_critical_loads_annexes.pdf, pp. 164–173.

  • Shotbolt, L., Hutchinson, S. M., & Thomas, A. D. (2006). Determining past heavy metal deposition onto the southern Pennines using reservoir sedimentary records. Journal of Paleolimnology, 35, 305–322.

    Article  Google Scholar 

  • Shotyk, W. (1997). Atmospheric deposition and mass balance of major and trace elements in two oceanic peat bog profiles, Northern Scotland and the Shetland Islands. Chemical Geology, 138, 55–72.

    Article  CAS  Google Scholar 

  • Smit, E., Leeflang, P., & Wernars, K. (1997). Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiology Ecology, 23, 249–261.

    Article  CAS  Google Scholar 

  • Smith, E. J., Hughes, S., Lawlor, A. J., Lofts, S., Simon, B. M., Stevens, P. A. et al. (2005). Potentially toxic metals in ombitrophic peat along a 400 km English–Scottish transect. Environmental Pollution, 136, 11–18.

    Article  CAS  Google Scholar 

  • Speir, T. W., Van Schaik, A. P., Percival, H. J., Close, M. E., & Pang, L. (2003). Heavy metals in soil, plants and groundwater following high-rate sewage sludge application to land. Water, Air and Soil Pollution, 150, 319–358.

    Article  CAS  Google Scholar 

  • Stackebrandt, E., & Rainey, F. A. (1995). Partial and complete 16S rDNA sequences, their use in generation of 16S rDNA phylogenetic trees and their implications in molecular ecological studies. In A. D. L. Akkermons, J. D. van Elsas & F. J. de Bruijn (Eds.). Molecular Microbial Ecology manual (pp. 3.1.1/1–3.1.1/17). Kluwer Academic Publishers.

  • Sterritt, R. M., & Lester, J. N. (1980). Interactions of heavy metals with bacteria. Science of the Total Environment, 14, 5–17.

    Article  CAS  Google Scholar 

  • Sugden, C. L. (1993). Isotopic studies of the environmental chemistry of lead. Ph.D. Thesis, University of Edinburgh.

  • Tipping, E. (1998). Humic Ion-Binding Model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquatic Geochemistry, 4, 3–48.

    Article  CAS  Google Scholar 

  • Tipping, E., Lawloe, A. J., Lofts, S., & Shotbolt, L. (2006). Simulating the long-term chemistry of an upland UK catchment: Heavy metals. Environmental Pollution, 141, 139–150.

    Article  CAS  Google Scholar 

  • Tipping, E., Rieuwerts, J., Pan, G., Ashmore, M. R., Lofts, S., Hill, M. T. R. et al. (2003). The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environmental Pollution, 125, 213–225.

    Article  CAS  Google Scholar 

  • Tipping, E., & Smith, E. J. (2000). Assessment of acidification reversal in surface waters of the Pennines. Centre for Ecology and Hydrology, Report for the Department of Trade and Industry, N/01/00058/REP.

  • Weiss, D., Shotyk, W., Boyle, E. A., Kramers, J. D., Appleby, P. G., & Cheburkin, A. K. (2002). Comparative study of the temporal evolution of atmospheric lead deposition in Scotland and eastern Canada using blanket peat bogs. Science of the Total Environment, 292, 7–18.

    Article  CAS  Google Scholar 

  • West, S., Charman, D. J., Grattan, J. P., & Cherburkin, A. K. (1997). Heavy metals in Holocene peats from south west England: Detecting mining impacts and atmospheric pollution. Water, Air and Soil Pollution, 100, 343–353.

    Article  CAS  Google Scholar 

  • Wise, M. G., McArthur, J. V., & Shimkets, L. J. (1999). Methanotroph diversity in landfill soil: Isolation of novel Type I and Type II Methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Applied and Environmental Microbiology, 65, 4887–4897.

    CAS  Google Scholar 

  • Yang, H., Rose, N. L., Boyle, J. F., & Battarbee, R. W. (2001). Storage and distribution of trace metals and spheroidal carbonaceous particles (SCPs) from atmospheric deposition in the catchment peats of Lochnagar, Scotland. Environmental Pollution, 115, 231–238.

    Article  CAS  Google Scholar 

  • Yoshida, N., Takahashi, N., & Hiraishi, A. (2005). Phylogenetic characterization of polychlorinated-dioxin-dechlorinating microbial community by use of microcosm studies. Applied and Environmental Microbiology, 71, 4325–4334.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was funded by a Moors for the Future Small Project research Grant; an organisation funded by the UK National Heritage Lottery Fund. The authors thank Professor Ed Tipping for modelling free ion metal data and an anonymous reviewer whose comments improved an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia E. Linton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linton, P.E., Shotbolt, L. & Thomas, A.D. Microbial Communities in Long-Term Heavy Metal Contaminated Ombrotrophic Peats. Water Air Soil Pollut 186, 97–113 (2007). https://doi.org/10.1007/s11270-007-9468-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9468-z

Keywords

Navigation