Skip to main content
Log in

High-Speed Friction Measurements Using a Modified Surface Forces Apparatus

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Methods of measuring friction forces in the surface forces apparatus (SFA) are presented for sliding velocities from <1 nm/s to >10 m/s. A feed-forward control (FFC) system for the piezoelectric bimorph slider attachment is introduced to allow experiments at velocities up to ~4 mm/s. For still higher speeds, a motor-driven rotating mini-disk setup using a pin-on-disk geometry is presented, with modifications to enable sliding velocities in the ranges 1 cm/s–5 m/s and 1–25 m/s. Example data sets demonstrate the applicability of the approach to modeling important tribological systems including hard-disk drives. We find that mechanical system parameters such as the resonant frequencies and mutual alignments of different moving parts become increasingly important in determining the tribological response at sliding velocities above ~1 cm/s (for SFA or bench top devices). Smooth or stick-slip sliding—common features of low-speed sliding—become replaced by large-amplitude oscillatory responses that depend on the load and especially the driving speed or rotational/reciprocating frequencies. Detailed recordings and modeling of these complex effects are necessary for fully understanding and controlling frictional behavior at high speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Luengo, G., Israelachvili, J., Granick, S.: Generalized effects in confined fluids: new friction map for boundary lubrication (vol 200, pg 328, 1996). Wear 205, 246 (1997)

    Article  CAS  Google Scholar 

  2. Chen, Y.L., Helm, C.A., Israelachvili, J.N.: Molecular mechanisms associated with adhesion and contact-angle hysteresis of monolayer surfaces. J. Phys. Chem. 95, 10736–10747 (1991)

    Article  CAS  Google Scholar 

  3. Yoshizawa, H., Chen, Y.L., Israelachvili, J.: Fundamental mechanisms of interfacial friction. 1. Relation between adhesion and friction. J. Phys. Chem. 97, 4128–4140 (1993)

    Article  CAS  Google Scholar 

  4. Israelachvili, J., Min, Y., Akbulut, M., Alig, A., Carver, G., Greene, W., Kristiansen, K., Meyer, E., Pesika, N., Rosenberg, K., Zeng, H.: Recent advances in the surface forces apparatus (SFA) technique. Rep. Prog. Phys. 73, 036601 (2010)

    Article  Google Scholar 

  5. Seborg, D.E., Edgar, T.F., Mellichamp, D.A.: Process Dynamics and Control. Wiley, Hoboken (2004)

    Google Scholar 

  6. Newby, B.M.Z., Chaudhury, M.K., Brown, H.R.: Macroscopic evidence of the effect of interfacial slippage on adhesion. Science 269, 1407–1409 (1995)

    Article  CAS  Google Scholar 

  7. McGuiggan, P.M., Hsu, S.M., Fong, W., Bogy, D., Bhatia, C.S.: Friction measurements of ultra-thin carbon overcoats in air. J. Tribol. 124, 239–244 (2002)

    Article  CAS  Google Scholar 

  8. Berman, A.D., Ducker, W.A., Israelachvili, J.N.: Origin and characterization of different stick-slip friction mechanisms. Langmuir 12, 4559–4563 (1996)

    Article  CAS  Google Scholar 

  9. Landman, U., Luedtke, W.D., Ribarsky, M.W.: Structural and dynamical consequences of interactions in interfacial systems. J. Vac. Sci. Technol. A 7, 2829–2839 (1989)

    Article  CAS  Google Scholar 

  10. Landman, U., Luedtke, W.D., Ringer, E.M.: Atomistic mechanisms of adhesive contact formation and interfacial processes. Wear 153, 3–30 (1992)

    Article  CAS  Google Scholar 

  11. Robbins, M.O., Thompson, P.A.: Critical velocity of stick-slip motion. Science 253, 916 (1991)

    Article  CAS  Google Scholar 

  12. Thompson, P.A., Robbins, M.O.: Origin of stick-slip motion in boundary lubrication. Science 250, 792–794 (1990)

    Article  CAS  Google Scholar 

  13. Bhushan, B.: Tribology and Mechanics of Magnetic Storage Devices. Springer, New York (1990)

    Google Scholar 

  14. Chen, Y.L., Israelachvili, J.N.: Effects of ambient conditions on adsorbed surfactant and polymer monolayers. J. Phys. Chem. 96, 7752–7760 (1992)

    Article  CAS  Google Scholar 

  15. Yamada, S., Israelachvili, J.: Friction and adhesion hysteresis of fluorocarbon surfactant monolayer-coated surfaces measured with the surface forces apparatus. J. Phys. Chem. B 102, 234–244 (1998)

    Article  CAS  Google Scholar 

  16. Drummond, C., Israelachvili, J.: Dynamic behavior of confined branched hydrocarbon lubricant fluids under shear. Macromolecules 33, 4910–4920 (2000)

    Article  CAS  Google Scholar 

  17. Johnston, G.J., Wayte, R., Spikes, H.A.: The measurement and study of very thin lubricant films in concentrated contacts. Tribol. Trans. 34, 187–194 (1991)

    Article  CAS  Google Scholar 

  18. Muller, M., Lee, S., Spikes, H.A., Spencer, N.D.: The influence of molecular architecture on the macroscopic lubrication properties of the brush-like co-polyelectrolyte poly(l-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) adsorbed on oxide surfaces. Tribol. Lett. 15, 395–405 (2003)

    Article  Google Scholar 

  19. Vigil, G., Xu, Z.H., Steinberg, S., Israelachvili, J.: Interactions of silica surfaces. J. Colloid Interface Sci. 165, 367–385 (1994)

    Article  CAS  Google Scholar 

  20. Steinberg, S., Ducker, W., Vigil, G., Hyukjin, C., Frank, C., Tseng, M.Z., Clarke, D.R., Israelachvili, J.N.: Vanderwaals epitaxial-growth of alpha-alumina nanocrystals on mica. Science 260, 656–659 (1993)

    Article  CAS  Google Scholar 

  21. Golan, Y., Alcantar, N.A., Kuhl, T.L., Israelachvili, J.: Generic substrate for the surface forces apparatus: deposition and characterization of silicon nitride surfaces. Langmuir 16, 6955–6960 (2000)

    Article  CAS  Google Scholar 

  22. Zeng, H.B., Zhao, B.X., Israelachvili, J.N., Tirrell, M.: Liquid- to solid-like failure mechanism of thin polymer films at micro- and nanoscales. Macromolecules 43, 538–542 (2010)

    Article  CAS  Google Scholar 

  23. Horn, R.G., Bachmann, D.J., Connor, J.N., Miklavcic, S.J.: The effect of surface and hydrodynamic forces on the shape of a fluid drop approaching a solid surface. J. Phys. 8, 9483–9490 (1996)

    CAS  Google Scholar 

  24. Reddyhoff, T., Spikes, H.A., Olver, A.V.: Compression heating and cooling in elastohydrodynamic contacts. Tribol. Lett. 36, 69–80 (2009)

    Article  CAS  Google Scholar 

  25. Akbulut, M., Alig, A.R.G., Israelachvili, J.: Friction and tribochemical reactions occurring at shearing interfaces of nanothin silver films on various substrates. J. Chem. Phys. 124, 174703 (2006)

    Article  Google Scholar 

  26. Xie, H.W., Song, K.Y., Mann, D.J., Hase, W.L.: Temperature gradients and frictional energy dissipation in the sliding of hydroxylated alpha-alumina surfaces. Phys Chem Chem Phys 4, 5377–5385 (2002)

    Article  CAS  Google Scholar 

  27. Bhushan, B.: Springer Handbook of Nanotechnology. Springer, Berlin (2007)

    Book  Google Scholar 

  28. Heuberger, M., Drummond, C., Israelachvili, J.: Coupling of normal and transverse motions during frictional sliding. J. Phys. Chem. B 102, 5038–5041 (1998)

    Article  CAS  Google Scholar 

  29. Luengo, G., Schmitt, F.J., Hill, R., Israelachvili, J.: Thin film rheology and tribology of confined polymer melts: contrasts with bulk properties. Macromolecules 30, 2482–2494 (1997)

    Article  CAS  Google Scholar 

  30. Lowrey, D. D., Min, Y., Banquy, X., Belman, N., Israelachvili, J. N.: Monitoring transient friction behavior in lubricated sliding contacts. Presented at International Joint Tribology Conference, Memphis (2009)

  31. Drummond, C., Israelachvili, J.: Dynamic phase transitions in confined lubricant fluids under shear. Phys. Rev. E 63(4 Pt 1), 041506 (2001)

    Article  CAS  Google Scholar 

  32. Gourdon, D., Israelachvili, J.N.: Transitions between smooth and complex stick-slip sliding of surfaces. Phys. Rev. E 68, 021602 (2003)

    Article  Google Scholar 

  33. Yoshizawa, H., Israelachvili, J.: Fundamental mechanisms of interfacial friction. 2. Stick-slip friction of spherical and chain molecules. J. Phys. Chem. 97, 11300–11313 (1993)

    Article  CAS  Google Scholar 

  34. Ruths, M., Israelachvili, J.: Surface forces and nanorheology of molecularly thin films. In: Bhushan, B. (ed.) Springer Handbook of Nanotechnology, 2nd rev and extended edn, pp. 859–924. Springer, Berlin (2007)

    Chapter  Google Scholar 

  35. Gao, J.P., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N., Landman, U.: Frictional forces and Amontons’ law: from the molecular to the macroscopic scale. J. Phys. Chem. B 108, 3410–3425 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

DOE grant number DE-FG02-87ER45331 for supporting KT, JHK, NB, YM, NSP, and JNI in the design and construction of the high-speed friction attachments, and General Motors Company for supporting DDL and XB in the design and construction of the high-speed friction attachments, and in the carrying out of the high-speed experiments with the cellulose friction surfaces. DDL acknowledges support from ICB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Israelachvili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowrey, D.D., Tasaka, K., Kindt, J.H. et al. High-Speed Friction Measurements Using a Modified Surface Forces Apparatus. Tribol Lett 42, 117–127 (2011). https://doi.org/10.1007/s11249-011-9746-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-011-9746-1

Keywords

Navigation