Skip to main content
Log in

Can a Single Atom Serve as the Active Site in Some Heterogeneous Catalysts?

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We examine a number of distinct situations relating to heterogeneous catalysts where either a single atom (or ion), or a very small cluster of atoms functions as the locus of chemical turnover in various distinct kinds of conversion. There is little doubt that individual ions at certain crystallographic sites in nanoporous solids can indeed act as single-site catalysts. The situation concerning nanoclusters of pure metal (or bimetallic entities) is rather more ambiguous. What was hitherto thought to be an effective catalyst made up of a small cluster of Pt supported on γ-Al2O3 (for hydrogenation) now seems to be a single atom of Pt attached to a 5-coordinated AlIII ion. And in the case of Au or Pt on other supports, there is evidence that a single Pt atom, positively charged, but surrounded by alkali-metal ions, is a powerful catalyst for the water–gas shift (CO + H2O → H2 + CO2) reaction. We also report interesting results concerning the mobility of CeO2 support material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thomas JM, Ducati C (2011) In: Che M, Vedrine JC (eds) Characterization of solid catalysts. Wiley––VCH, Weinheim

  2. Rim RT, Eom D, Liu L, Stolyarova E, Raitano JM, Chan S-W, Flytzani-Stephanopoulos M, Flynn GW (2009) J Phys Chem C 113:10198

    Article  CAS  Google Scholar 

  3. Fu Q, Saltsburg H, Flytzani-Stephanopoulous M (2003) Science 301:935

    Article  CAS  Google Scholar 

  4. Haruta M (1997) Catal Today 36:153

    Article  CAS  Google Scholar 

  5. Fierro-Gonzalez JC, Bhirud VA, Gates BC (2005) Chem Commun 42:5275

    Article  Google Scholar 

  6. Liu Z-P, Jenkins SJ, King DA (2005) Phys Rev Lett 94:196102

    Article  Google Scholar 

  7. Guzman J, Gates BC (2003) Angew Chem Int Ed 42:690

    Article  CAS  Google Scholar 

  8. Zhang X, Shi H, Xu B-Q (2005) Angew Chem Int Ed 44:7132

    Article  CAS  Google Scholar 

  9. Gai PL, Boyes ED (2009) Microsc Res Tech 72:153

    Article  CAS  Google Scholar 

  10. Zewail AH, Thomas JM (2010) 4D electron microscopy: imaging in space and time. Imperial College Press, London

    Google Scholar 

  11. Thomas JM, Raja R, Lewis DW (2005) Angew Chem Int Ed 44:6456

    Article  CAS  Google Scholar 

  12. Thomas JM (2008) J Chem Phys 128:182502

    Article  Google Scholar 

  13. Wright PA (2008) Microporous framework solids. RSC Publishing, Cambridge

    Google Scholar 

  14. Thomas JM, Raja R (2006) Top Catal 40:3

    Article  CAS  Google Scholar 

  15. Thomas JM, Raja R, Sankar G, Bell RG (1999) Nature 398:227

    Article  CAS  Google Scholar 

  16. Dugal M, Sankar G, Raja R, Thomas JM (2000) Angew Chem Int Ed 39:2310

    Article  CAS  Google Scholar 

  17. Raja R, Sankar G, Thomas JM (2000) Angew Chem Int Ed 39:2313

    Article  CAS  Google Scholar 

  18. Thomas JM, Raja R, Sankar G, Bell RG (2001) Acc Chem Res 34:191

    Article  CAS  Google Scholar 

  19. Cheetham AK, Eddy MM, Thomas JM (1984) J Chem Soc Chem Comm 20:1337

    Article  Google Scholar 

  20. Gomez-Hortiguela L, Cora F, Sankar G, Zicovich-Wilson C, Catlow CRA (2010) Chem Eur J 16:13618

    Google Scholar 

  21. Ruddy DA, Tilley TD (2008) J Am Chem Soc 130:11088

    Article  CAS  Google Scholar 

  22. Abramo GP, Li L, Marks TJ (2002) J Am Chem Soc 124:13966

    Article  CAS  Google Scholar 

  23. Thomas JM, Catlow CRA, Sankar G (2002) Chem Commun 2921

  24. Dal Santo V, Liguori F, Pirovano C, Guidotti M (2010) Molecules 15:3829

    Article  CAS  Google Scholar 

  25. Argo AM, Odzak JF, Lai FS, Gates BC (2002) Nature 415:623

    Article  CAS  Google Scholar 

  26. Thomas JM, Adams RD, Boswell EM, Captain B, Gronbeck H, Raja R (2008) Faraday Disc 138:301

    Article  Google Scholar 

  27. Thomas JM, Raja R, Gai PL, Gronbeck H, Hernandez-Garrido JC (2010) Chem Cat Chem 2:402

    CAS  Google Scholar 

  28. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301

    Article  CAS  Google Scholar 

  29. Bond GC, Thompson DT (1999) Catal Rev–Sci Eng 41:319

    Article  CAS  Google Scholar 

  30. Hutchings GJ, Hall MS, Carley AF, Landon P, Solsona BE, Kiely CJ, Herzing A, Makkee M, Moulijn JA, Overweg A, Fierro-Gonzalez JC, Guzman J, Gates BC (2006) J Catal 242:71

    Article  CAS  Google Scholar 

  31. Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1997) Catal Lett 44:83

    Article  CAS  Google Scholar 

  32. Valden M, Lai X, Goodman DW (1998) Science 281:1647

    Article  CAS  Google Scholar 

  33. Schwartz V, Mullins DR, Yan W, Chen B, Dai S, Overbury SH (2004) J Phys Chem B 108:15782

    Article  CAS  Google Scholar 

  34. Date M, Okumura M, Tsubota S, Haruta M (2004) Angew Chem Int Ed 43:2129

    Article  CAS  Google Scholar 

  35. Carrettin S, Concepción P, Corma A, Nieto JML, Puntes VF (2004) Angew Chem Int Ed 43:2538

    Article  CAS  Google Scholar 

  36. Deng W, Frenkel AI, Si R, Flytzani-Stephanopoulos M (2008) J Phys Chem C 112:12834

    Article  CAS  Google Scholar 

  37. Deng W, Carpenter C, Yi N, Flytzani-Stephanopoulos M (2007) Top Catal 44:199

    Article  CAS  Google Scholar 

  38. Chen MS, Goodman DW (2006) Catal Today 111:22

    Article  CAS  Google Scholar 

  39. Meyer R, Lemire C, Shaikhutdinov SK, Freund HJ (2004) Gold Bull 37:72

    Article  CAS  Google Scholar 

  40. Shaikhutdinov SK, Meyer R, Naschitzki M, Baumer M, Freund HJ (2003) Catal Lett 86:211

    Article  CAS  Google Scholar 

  41. Giordano L, Pacchioni G, Goniakowski J, Nilius N, Rienks EDL, Freund HJ (2008) Phys Rev Lett 101:026102

    Article  Google Scholar 

  42. Fierro-Gonzalez JC, Gates BC (2004) J Phys Chem B 108:16999

    Article  CAS  Google Scholar 

  43. Hendricksen BLM, Bobaru SC, Frenken JWM (2004) Surf Sci 552:229

    Article  Google Scholar 

  44. Kwak JH, Hu J, Mei D, Yi C-W, Kim DH, Peden CHF, Allard LF, Szanyi J (2009) Science 325:1670

    Article  CAS  Google Scholar 

  45. Vaarkamp M, Miller JT, Modica FS, Koningsberger DC (1996) J Catal 163:294

    Article  CAS  Google Scholar 

  46. Yu R, Song H, Zhang X, Yang P (2005) J Phys Chem B 109:6940

    Article  CAS  Google Scholar 

  47. Thomas JM, Johnson BFG, Raja R, Sankar G, Midgley PA (2003) Acc Chem Res 36:20

    Article  CAS  Google Scholar 

  48. Uzun A, Gates BC (2008) Angew Chem Int Ed 47:9245

    Article  CAS  Google Scholar 

  49. Uzun A, Gates BC (2009) J Am Chem Soc 131:15887

    Article  CAS  Google Scholar 

  50. Möbus G, Saghi Z, Sayle D, Sayle TXT (2010) Adv Mater (in press)

  51. Aguilar-Guerro V, Gates BC (2008) J Catal 269:351

    Article  Google Scholar 

  52. Maschmeyer T, Rey F, Sankar G, Thomas JM (1995) Nature 378:159

    Article  CAS  Google Scholar 

  53. Zhai Y, Pierre D, Si R, Deng W, Ferrin P, Nilekar AU, Peng G, Herron JA, Bell DC, Saltsburg H, Mavrikakis M, Flytzani-Stephanopoulos M (2010) Science 329:1633

    Article  CAS  Google Scholar 

  54. Kwon O-H, Zewail AH (2010) Science 328:1668

    Article  CAS  Google Scholar 

  55. Thomas JM (2011) Angew Chem Int Ed 50:49

    Google Scholar 

Download references

Acknowledgments

ZS thanks the European Union for the financial support under the Framework 6 program for an Integrated Infrastructure Initiative. Ref.: 026019 ESTEEM. JMT thanks Drs M. Flytzani-Stephanopoulos and M. Mavrikakis for their kindness in letting us use Fig. 9. PLG thanks the University of York, Yorkshire Forward and JEOL for the Nanocentre support including the AC TEM/STEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Meurig Thomas.

Additional information

Dedicated to Professor R. K. Grasselli on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, J.M., Saghi, Z. & Gai, P.L. Can a Single Atom Serve as the Active Site in Some Heterogeneous Catalysts?. Top Catal 54, 588–594 (2011). https://doi.org/10.1007/s11244-011-9677-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-011-9677-y

Keywords

Navigation