Skip to main content
Log in

Simultaneous MS-IR Studies of Surface Formate Reactivity Under Methanol Synthesis Conditions on Cu/SiO2

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The coverages and surface lifetimes of copper-bound formates on Cu/SiO2 catalysts, and the steady-state rates of reverse water-gas shift and methanol synthesis have been measured simultaneously by mass (MS) and infrared (IR) spectroscopies under a variety of elevated pressure conditions at temperatures between 140 and 160 °C. DCOO lifetimes under steady state catalytic conditions in CO2:D2 atmospheres were measured by 12C–13C isotope transients (SSITKA). The values range from 220 s at 160 °C to 660 s at 140 °C. The catalytic rates of both reverse water gas shift (RWGS) and methanol synthesis are ~100-fold slower than this formate removal rate back to CO2 + 1/2 H2, and thus they do not significantly influence the formate lifetime or coverage at steady state. The formate coverage is instead determined by formate’s rapid production/decomposition equilibrium with gas phase CO2 + H2. The results are consistent with formate being an intermediate in methanol synthesis, but with the rate-controlling step being after formate production (for example, its further hydrogenation to methoxy). A 2–3 fold shorter life time (faster decomposition rate) was observed for formate under reactions conditions, with both D2 and CO2 present, than in pure Ar or D2 + Ar alone. This effect, due in part to the effects of the coadsorbates produced under reaction conditions, illustrates the importance of using in situ techniques in the study of catalytic mechanisms. The carbon which appears in the methanol product spends a longer time on the surface than the formate species, 1.8 times as long at 140 °C. The additional delay on the surface is attributed in part to readsorption of methanol on the catalyst, thus obscuring the mechanistic link between formate and methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chinchen GC, Denny PJ, Jennings JR, Spencer MS, Waugh KC (1988) Appl Catal 36:1

    Article  CAS  Google Scholar 

  2. Askgaard TS, Nørskov JK, Ovesen CV, Stolze P (1995) J Catal 156:229

    Article  CAS  Google Scholar 

  3. Schumacher N, Boisen A, Dahl S, Gokhale AA, Kandoi S, Grabow LC, Dumesic JA, Mavrikakis M, Chorkendorff I (2005) J Catal 229:265

    Article  CAS  Google Scholar 

  4. Qi XM, Flytzani-Stephanopoulos M (2004) Ind Eng Chem Res 43:3055

    Article  CAS  Google Scholar 

  5. Chorkendorff I, Taylor PA, Rasmussen PB (1992) J Vac Technol A 10:2277

    Article  CAS  Google Scholar 

  6. Wachs IE, Madix RJ (1978) J Catal 53:208

    Article  CAS  Google Scholar 

  7. Russell JN Jr, Gates SM, Yates JT Jr (1985) Surf Sci 163:516

    Article  CAS  Google Scholar 

  8. Ernst K-H, Campbell CT, Moretti G (1992) J Catal 134:66

    Article  CAS  Google Scholar 

  9. Gokhale AA, Dumesic JA, Mavrikakis M (2008) J Am Chem Soc 130:1402

    Article  CAS  Google Scholar 

  10. Burch R, Golunski SE, Spencer MS (1990) Catal Lett 5:55

    Article  CAS  Google Scholar 

  11. Fujitani T, Nakamura I, Uchijima T, Nakamura J (1997) Surf Sci 383:285

    Article  CAS  Google Scholar 

  12. Fujitani T, Nakamura I, Ueno S, Uchijima T, Nakamura J (1997) Appl Surf Sci 121:583

    Article  Google Scholar 

  13. Wachs IE, Madix RJ (1980) Appl Surf Sci 5:426

    Article  CAS  Google Scholar 

  14. Mei D, Xu DL, Henkelman G (2008) J Catal 258:44

    Article  CAS  Google Scholar 

  15. Taylor PA, Rusmussen PB, Ovesen CV, Stoltze P, Chorkendorff I (1992) Surf Sci 261:191

    Article  CAS  Google Scholar 

  16. Nerlov J, Chorkendorff I (1999) J Catal 181:271

    Article  CAS  Google Scholar 

  17. Taylor PA, Rasmussen PB, Chorkendorff I (1991) J Phys Condens Matter 3:S59

    Article  CAS  Google Scholar 

  18. Taylor PA, Rasmussen PB, Chorkendorff I (1995) J Chem Soc Faraday Trans 91:1267

    Article  CAS  Google Scholar 

  19. Nakano H, Nakamura I, Fujitani T, Nakamura J (2001) J Phys Chem B 105:1355

    Article  CAS  Google Scholar 

  20. Yatsu T, Nishimura H, Fujitani T, Nakamura J (2000) J Catal 191:423

    Article  CAS  Google Scholar 

  21. Nakamura I, Nakano H, Fijitani T, Uchijima T, Nakamura J (1999) J Vac Sci Technol A 17:1592

    Article  CAS  Google Scholar 

  22. Millar GJ, Rochester CH, Waugh K (1991) J Chem Soc Faraday Trans 87:1491

    Article  CAS  Google Scholar 

  23. Millar GJ, Rochester CH, Waugh K (1992) J Chem Soc Faraday Trans 88:1477

    Article  CAS  Google Scholar 

  24. Ludviksson A, Zhang R, Campbell CT, Griffiths K (1992) Surf Sci 313:64

    Article  Google Scholar 

  25. Yang Y, Mims CA, Disselkamp RS, Mei D, Kwak Ja-Hun, Szanyi J, Peden CHF, Campbell CT (2008) Catal Lett 125:201

    Article  CAS  Google Scholar 

  26. Yang Y, Mims CA, Peden CHF, in preparation

  27. Yang Y, Disselkamp RS, Campbell CT, Szanyi J, Peden CHF, Goodwin JG Jr (2006) Rev Sci Instrum 77 (094104)

  28. Luys M-J, van Oeffelt PH, Pieters P, Ter Veen R (1991) Catal Today 10:283

    Article  CAS  Google Scholar 

  29. Luys MJ, van Oeffelt PH, Brouwer WGJ, Pijpers AP, Scholten JJF (1989) Appl Catal 46:161

    Article  CAS  Google Scholar 

  30. Hayden BE, Prince K, Woodruff DP, Bradshaw MA (1983) Surf Sci 133:589

    Article  CAS  Google Scholar 

  31. Kushida Y, Choi Y, Fujitani T, Uchijima T, Nakamura J (1997) J Surf Sci Soc Jpn 18:478

    CAS  Google Scholar 

  32. Madix RJ, Telford SG (1992) Surf Sci 277:246

    Article  CAS  Google Scholar 

  33. Nishimura H, Yatsu T, Fujitani T, Uchijima T, Nakamura J (2000) J Mol Cat A Chem 155:3

    Article  CAS  Google Scholar 

  34. Meunier FC, Tibiletti D, Goguet A, Reid D, Burch R (2005) Appl Catal A Gen 289:104

    Article  CAS  Google Scholar 

  35. Meunier FC, Tibiletti D, Goguet A, Shekhtman S, Hardacre C, Burch R (2007) Catal Today 126:143

    Article  CAS  Google Scholar 

  36. Clarke DB, Lee D-K, Sandoval MJ, Bell AT (1994) J Catal 150:81

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was performed at the Institute for Interfacial Catalysis (IIC) at Pacific Northwest National Laboratory (PNNL), and funded by a Laboratory Directed Research and Development (LDRD) grant as part of the Catalysis Initiative program administered by PNNL. The work was carried out in the Environmental Molecular Sciences Laboratory (EMSL) at PNNL, a National Scientific User facility supported by the US Department of Energy Office of Biological and Environmental Research. PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy. CTC would like to acknowledge the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division grant number DE-FG02-96ER14630, for support of this work. CAM gratefully acknowledges PNNL support for his participation in the IIC as a visiting professor. The authors wish to dedicate this paper to the memory of Professor J.M. White.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Mims.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Mims, C.A., Disselkamp, R.S. et al. Simultaneous MS-IR Studies of Surface Formate Reactivity Under Methanol Synthesis Conditions on Cu/SiO2 . Top Catal 52, 1440–1447 (2009). https://doi.org/10.1007/s11244-009-9320-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9320-3

Keywords

Navigation