Skip to main content

Advertisement

Log in

Designed Nanoporous Solids for the Green Production of Vitamins, Fine Chemicals and Renewable Nylons

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Designed nanoporous solids are highly effective in facilitating shape-selective and regiospecific catalytic conversions in the synthesis of fine chemicals, pharmaceutical intermediates as well as in sustainable manufacture of ε-caprolactam and in the production of adipic acid from renewable resources. When judiciously engineered single-sites are accommodated within a well-defined nanospace, catalytically active species are generated, which in turn facilitate the determination of the kinetics and mechanism of catalytic turnover and render accessible the energetics of various intermediates. The approach that we have evolved adopts the principles and practices of solid-state chemistry, augmented by lessons derived from enzymology, as well as computational chemistry. In particular, large fractions of these catalysts are ideally suited for the era of green chemistry and clean technology in which single-step and/or solvent-free processes abound, and in which benign oxidants such as air or oxygen and inexpensive nanoporous materials are employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 4
Fig. 8

Similar content being viewed by others

References

  1. Anastas PT, Williamson TC (eds) (1998) Green chemistry. Oxford University Press, New York, p 1

  2. Poliakoff M, Licence P (2007) Nature 450:810

    Article  CAS  Google Scholar 

  3. Blaser H-U, Studer M (2003) Green Chem 5:112

    Article  CAS  Google Scholar 

  4. Baiker A (1999) Chem Rev 99:453

    Article  CAS  Google Scholar 

  5. Kozhevnikov IV (2007) J Mol Catal A 262:86

    Article  CAS  Google Scholar 

  6. Christensen CH, Norskov JK (2008) J Chem Phys 128:182503

    Article  Google Scholar 

  7. Manley JB, Anastas PT, Cue BW Jr (2008) J Cleaner Prod 16:743

    Article  Google Scholar 

  8. Bianchi D, Vignola R (2000) Angew Chem Int Ed 39:4321

    Article  CAS  Google Scholar 

  9. Sheldon RA, van Bekkum H (eds) (2001) Fine chemicals through heterogeneous catalysis. Wiley-VCH, Weinheim, Germany, p 1

  10. Centi G, Perathoner S (2003) Catal Today 77:287

    Article  CAS  Google Scholar 

  11. Dupont J, de Souza RF, Suarez AZ (2002) Chem Rev 102:3667

    Article  CAS  Google Scholar 

  12. Christensen CH, Rass-Hansen J, Marsden CC, Taarning E, Egeblad E (2008) Chem Sus Chem 1:283

    CAS  Google Scholar 

  13. Centi G, van Santen RA (eds) (2007) Catalysis for renewables. Wiley-VCH, Weinheim, Germany, p 101

  14. Cortright RD, Davda RR, Dumesic JA (2002) Nature 418:964

    Article  CAS  Google Scholar 

  15. Westermann P, Jorgensen B, Lange L, Ahring BK, Christensen CH (2007) Int J Hydrogen Energy 32:4135

    Article  CAS  Google Scholar 

  16. Taarning E, Madsen AT, Marchetti JM, Egeblad K, Christensen CH (2008) Green Chem 10:408

    Article  CAS  Google Scholar 

  17. Niu W, Draths KM, Frost JW (2002) Biotechnol Progress 18:201

    Article  CAS  Google Scholar 

  18. Farrow RS, Goldburg CB, Small MJ (2000) Environ Sci Technol 34:1381

    Article  CAS  Google Scholar 

  19. Blaser H-U, Studer M (1999) Appl Catal A 189:191

    Article  CAS  Google Scholar 

  20. Chuck R (2005) Appl Catal A 280:75

    Article  CAS  Google Scholar 

  21. Hatanaka M, Tanaka N (1993) WO 9305022 Nissan Chemical Ind. Ltd.

  22. Thomas JM, Raja R, Lewis DW (2005) Angew Chem Int Ed 44:6456

    Article  CAS  Google Scholar 

  23. Thomas JM, Raja R, Sankar G, Johnson BFG, Lewis DW (2001) Chem Eur J 7:2973

    Article  CAS  Google Scholar 

  24. Thomas JM, Raja R (2006) Topics Catal 40:3

    Article  CAS  Google Scholar 

  25. Thomas JM, Raja R (2001) Chem Commun 675

  26. Raja R, Thomas JM, Greenhill-Hooper M, Ley SV, Paz FAA (2008) Chem Eur J 14:2340

    Article  CAS  Google Scholar 

  27. Raja R, Thomas JM, Xu M, Harris KDM, Greenhill-Hooper M, Quill K (2006) Chem Commun 448

  28. McKillop A, Sanderson WR (1995) Tetrahedron 51:6145

    Article  CAS  Google Scholar 

  29. Raja R, Thomas JM, Greenhill-Hooper M, Doukova V (2007) Chem Commun 1924

  30. Notari B (1996) Adv Catal 41:253

    Article  CAS  Google Scholar 

  31. Porta F, Prati L (2004) J Catal 224:397

    Article  CAS  Google Scholar 

  32. Thomas JM, Johnson BFG, Raja R, Sankar G, Midgley PA (2002) Accounts Chem Res 35:20

    Google Scholar 

  33. Raja R, Khimyak T, Thomas JM, Hermans S, Johnson BFG (2001) Angew Chem Int Ed 40:4638

    Article  CAS  Google Scholar 

  34. Thomas JM, Raja R, Johnson BFG, O’Connell TJ, Sankar G, Khimyak T (2003) Chem Commun 1126

  35. Mokaya R, Poliakoff M (2005) Nature 437:1243

    Article  CAS  Google Scholar 

  36. Cunningham A (2005) Sci News 168:179

    Article  Google Scholar 

  37. Raja R, Sankar G, Thomas JM (2001) J Am Chem Soc 123:8153

    Article  CAS  Google Scholar 

  38. Thomas JM, Raja R (2005) Proc Natl Acad Sci USA 102:13732

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Raja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raja, R. Designed Nanoporous Solids for the Green Production of Vitamins, Fine Chemicals and Renewable Nylons. Top Catal 52, 322–332 (2009). https://doi.org/10.1007/s11244-008-9155-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9155-3

Keywords

Navigation