Skip to main content

Advertisement

Log in

Hydrogen Production from Glycerol Over Nickel Catalysts Supported on Al2O3 Modified by Mg, Zr, Ce or La

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Hydrogen production from glycerol reforming in liquid (aqueous phase reforming, APR) and vapor (steam reforming SR) phase over alumina-supported nickel catalysts modified with Ce, Mg, Zr and La was studied. Characterization of catalysts by temperature programmed reduction and XPS analyses revealed important structural effects: (i) the intercalation of Mg between nickel and alumina that inhibited the alumina incorporation to nickel phases, (ii) the close contact between Ni and Zr phases and, (iii) the close surface interaction of La and Ce ions with NiO phases. The catalytic activity of the samples studied in this work clearly indicated the different catalyst functionalities necessary to carry out aqueous-phase and vapor-phase steam reforming of glycerol. For aqueous phase reforming of glycerol, the addition of Ce, La and Zr to Ni/Al2O3 improves the initial glycerol conversions obtained over the Ni/Al2O3 supported catalyst. It is suggested that the differences in catalytic activities are related with geometric effects caused by the decoration of Ni phases by Ce and La or by the close interaction between Ni and Zr. In spite that nickel catalysts showed high APR activities at initial times on stream, all samples showed, independently of support, important deactivation rates that deactivate the catalysts after few hours under operation. Catalysts characterization after APR showed the oxidation of the active metallic Ni during reaction as the main cause of the observed deactivation. In the case of the glycerol steam reforming in vapor phase, the use of Ce, La, Mg and Zr as promoters of Ni based catalysts increases the hydrogen selectivity. Differences in activity were explained in terms of enhancement in: surface nickel concentration (Mg), capacity to activate steam (Zr) and stability of nickel phases under reaction conditions (Ce and La).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ma F, Hanna MA (1999) Biosource Technol 70:1

    Article  CAS  Google Scholar 

  2. Cortright RD, Davda RR, Dumesic JA (2002) Nature 418:964

    Article  CAS  Google Scholar 

  3. Trimm DL (1997) Catal Today 37:233

    Article  CAS  Google Scholar 

  4. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2003) Appl Catal B Environm 43:13

    Article  CAS  Google Scholar 

  5. Shabaker JW, Davda RR, Huber GW, Cortright RD, Dumesic JA (2003) J Catal 215:344

    Article  CAS  Google Scholar 

  6. Parmaliana A, Arena F, Frusteri F, Coluccia S, Marchese L, Martra G, Chuvilin A (1993) J Catal 141:34

    Article  CAS  Google Scholar 

  7. Choudhary VR, Uphade BS, Mamman AS (1995) Catal Lett 32:387

    Article  CAS  Google Scholar 

  8. Souza MMV, Schmal M (2004) Stud Surf Sci Catal 147:133

    Article  CAS  Google Scholar 

  9. Wang X, Gorte RJ (2001) Catal Lett 73:15

    Article  CAS  Google Scholar 

  10. Bangala DN, Abatzoglou N, Chornet E (1998) AICHE J 44:927

    Article  CAS  Google Scholar 

  11. Shaper H, Doesburg EBM, Van Reijen LL (1983) Appl Catal 7:211

    Article  Google Scholar 

  12. Horiuchi T, Teshima Y, Osaki T, Sugiyama T, Suzuki K, Mori T (1999) Catal Lett 62:107

    Article  CAS  Google Scholar 

  13. Richardson JT, Twigg MV (1998) Appl Catal A Gen 167:57

    Article  CAS  Google Scholar 

  14. Sheffer B, Molhoek P, Moulijn JA (1989) Appl Catal 46:11

    Article  Google Scholar 

  15. Morant C, Sanz JM, Galan L, Soriano L, Rueda F (1989) Surf Sci 218:331

    Article  CAS  Google Scholar 

  16. Briggs D, Seah MP (Eds) (1990) Practical surface analysis by auger and X-ray photoelectron spectroscopy, 2nd edn. Wiley, Chinchester

    Google Scholar 

  17. Chen X, Liu Y, Niu G, Yang Z, Bian M, He A (2001) Appl Catal A Gen 205:159

    Article  CAS  Google Scholar 

  18. Haack LP, de Vries JE, Otto K, Chatta MS (1992) Appl Catal A Gen 82:199

    Article  CAS  Google Scholar 

  19. Ledford JS, Houalla M, Proctor A, Hercules DM, Petrakis L (1989) J Phys Chem 93:6770

    Article  CAS  Google Scholar 

  20. Morterra C, Ghiotti G, Bocuzzi F, Coluccia S (1978) J Catal 51:299

    Article  CAS  Google Scholar 

  21. Wang S, Lu GQM (1998) Energy Fuels 12:248

    Article  CAS  Google Scholar 

  22. Chou TY, Leu CH, Yeh CT (1995) Catal Today 26:53

    Article  CAS  Google Scholar 

  23. Shishido T, Sukenobu M, Morioka H, Kondo M, Wang Y, Takaki K, Takehira K (2002) Appl Catal A Gen 223:35

    Article  CAS  Google Scholar 

  24. Richardson JT, Lei M, Turk B, Forster K, Twigg MV (1994) Appl Catal A General 110:217

    Article  CAS  Google Scholar 

  25. Richardson JT, Turk B, Twigg MV (1996) Appl Catal A General 148:97

    Article  CAS  Google Scholar 

  26. Dufresne P, Payen E, Grimblot J , Bonelle JP (1981) J Phys Chem 85:2344

    Article  CAS  Google Scholar 

  27. Wu M, Hercules DM (1979) J Phys Chem 83:2003

    Article  CAS  Google Scholar 

  28. Shan W, Luo M, Lin P, Shen W, Li C (2003) Appl Catal A Gen 246:1

    Article  CAS  Google Scholar 

  29. Blom R, Dahl IM, Slagtern A, Sortland B, Spjelkavik A, Tangstad E (1994) Catal Today 21:535

    Article  CAS  Google Scholar 

  30. Guo J, Zhao H, Chai D, Zheng X (2004) Appl Catal A Gen 273:75

    Article  CAS  Google Scholar 

  31. Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA (2005) Appl Catal B Environm 56:171

    Article  CAS  Google Scholar 

  32. Shabaker JW, Huber GW, Davda RR, Cortright RD, Dumesic JA (2003) Catal Lett 88(1–2):1

    Article  CAS  Google Scholar 

  33. Shabaker JW, Huber GW, Dumesic JA (2004) J Catal 222:180

    Article  CAS  Google Scholar 

  34. Oh YS, Roh HS, Jun KW, Baek YS (2003) Int J of Hyd Energy 28:1387

    Article  CAS  Google Scholar 

  35. Ross JRH, Steel MCF, Zeini-Isfahani A (1978) J Catal 52:280

    Article  CAS  Google Scholar 

  36. Rostrup-Nielsen JR (1984) Catalysis science and technology, vol 5. Springer/Verlag, Berlin

    Google Scholar 

  37. Gates SM, Russel JN, Yates JTJ (1986) Surf Sci 171:111

    Article  CAS  Google Scholar 

  38. Takanabe K, Aika K, Seshan K, Lefferts L (2004) J Catal 227:101

    Article  CAS  Google Scholar 

  39. Natesakhawat S, Watson RB, Wang X, Ozkan US (2005) J Catal 234:496

    Article  CAS  Google Scholar 

  40. Zhang ZL, Verykios XE, MacDonald JM, Affrosman S (1996) J Phys Chem 100:744

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support to Ministerio de Educación y Ciencia of Spain (Projects MAT2003-08348-C04-01 and ENE2007-6753-C02-01) and the University of the Basque Country. R.M.N also acknowledges the Ministerio de Educación y Ciencia for a Ramon y Cajal research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Navarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iriondo, A., Barrio, V.L., Cambra, J.F. et al. Hydrogen Production from Glycerol Over Nickel Catalysts Supported on Al2O3 Modified by Mg, Zr, Ce or La. Top Catal 49, 46–58 (2008). https://doi.org/10.1007/s11244-008-9060-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9060-9

Keywords

Navigation