Skip to main content
Log in

Unique adsorption and catalytic behavior of H2 and CO over hollow Silica-Rh, -Ir, and -Ru nanocomposites prepared by Reversed Micelle Technique

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Hollow silica nano spheres containing Rh, Ir or Ru metal particles were synthesized by Rh(NH3)6Cl3 aq, Ir(NH3)3Cl3 aq or Ru(NH3)6Cl3 aq/NP-6/cyclohexane reversed micelle system. Hydrolysis of TEOS surrounding metal ammine complex crystals inside the micelle caused the formation of the hollow, which contained small metal particles inside and tiny metal clusters in the silica network. The amounts of H2 adsorption over Rh and Ir nanocomposites were two to three times more in the cases of hollow-SiO2 catalysts compared with those of non-hollow ones, suggesting the occlusion of hydrogen inside the hollows of Rh–SiO2 or Ir–SiO2. CO molecules could also permeate into the silica wall and be adsorbed on the metal clusters in the silica wall after 573 K pretreatment. Especially in the case of Ru nanocomposite the amount of adsorbed CO was much more than that of H2, suggesting some unique character of Ru metal nanoparticles. After 773 K pretreatment, however, the amount of CO(a) decreased drastically to less than 1/10 of H(a), indicating the densification of Si–O–Si bonds and the formation of ultra-micropores in the silica wall where only H2 can selectively permeate. Selective formation of methane was observed in the CO–H2 reaction over these nanocomposite catalysts, provably because of the higher concentration of hydrogen inside the hollow and silica network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.R. Patzke F. Krumeich R Nesper (2002) Angew. Chem. Int. Ed 41 2446 Occurrence Handle1:CAS:528:DC%2BD38Xls1OitL0%3D Occurrence Handle10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K

    Article  CAS  Google Scholar 

  2. C. Hippe M. Wark E. Lork G Schulz-Ekloff (1999) Micro. Meso. Mater. 31 235 Occurrence Handle1:CAS:528:DyaK1MXmtVyht7o%3D Occurrence Handle10.1016/S1387-1811(99)90074-4

    Article  CAS  Google Scholar 

  3. M. Wark C. Hippe G Schulz (2000) Stud. Surf. Sci. Catal. 129 474

    Google Scholar 

  4. S. Naito, M. Ue, S. Sakai, and T. Miyao, Chem. Commun., 2005, 1563

  5. M. Giersig T. Ung L.M. Liz-Marzan P Mulvaney (1997) Adv. Mater. 9 570 Occurrence Handle1:CAS:528:DyaK2sXjvFKqsLw%3D Occurrence Handle10.1002/adma.19970090712

    Article  CAS  Google Scholar 

  6. P. Mulvaney L.M. Liz-Marzan M. Giersig T Ung (2000) J. Mater. Chem. 10 1259 Occurrence Handle1:CAS:528:DC%2BD3cXjtlyjtrg%3D Occurrence Handle10.1039/b000136h

    Article  CAS  Google Scholar 

  7. L. Liu P. Li S.A Asher (1999) Nature 397 141 Occurrence Handle1:CAS:528:DyaK1MXntVOksA%3D%3D Occurrence Handle10.1038/16426

    Article  CAS  Google Scholar 

  8. H. Wang P. Chen X Zheng (2004) J. Mater. Chem. 14 1648 Occurrence Handle1:CAS:528:DC%2BD2cXjvFaqsLw%3D Occurrence Handle10.1039/b315999j

    Article  CAS  Google Scholar 

  9. W. Li, X. Sha, W. Dong and Z. Wang, Chem. Commun., 2002, 2434

  10. J. Cornelissen, E. Connor, H. Kim, V. Lee, T. Magibitang, P. Rice, W. Volksen, L. Sundberg, R. Miller, Chem. Commun., 2003, 1010

  11. T. Torimoto J. Paz Reyes K. Iwasaki B. Pal T. Shibayama K. Sugawara H. Takahashi B Ohtani (2003) J. Am. Chem. Soc. 125 316 Occurrence Handle1:CAS:528:DC%2BD38XpsFCms7g%3D Occurrence Handle10.1021/ja0278133

    Article  CAS  Google Scholar 

  12. H.J. Hah, J.S. Kim, B.J. Jeon, S.M. Koo and Y.E. Lee, Chem. Commun., 2003, 1712

  13. C.E. Fowler D. Khushalani S Mann (2001) J. Mater. Chem. 11 1968 Occurrence Handle1:CAS:528:DC%2BD3MXlt1ygsLs%3D Occurrence Handle10.1039/b102675p

    Article  CAS  Google Scholar 

  14. T. Miyao, N. Toyoizumi, S. Okuda, Y. Imai, K. Tajima and S. Naito, Chem. Lett. 1999, 1125

  15. A.J. Zarur Y Ying (2000) Nature 403 65 Occurrence Handle1:CAS:528:DC%2BD3cXlsl2gsQ%3D%3D Occurrence Handle10.1038/47450

    Article  CAS  Google Scholar 

  16. Y. Danzaki, Bunseki kagaku, 2002, 51, 983

    Google Scholar 

  17. D. Lootens C. Vautrin H.V. Damme T Zemb (2003) J. Mater. Chem. 13 2072 Occurrence Handle1:CAS:528:DC%2BD3sXmsFWhsLs%3D Occurrence Handle10.1039/b305808p

    Article  CAS  Google Scholar 

  18. M. Giersig T. Ung L. Liz-Marzan P Mulvaney (1997) Adv. Mater. 9 570 Occurrence Handle1:CAS:528:DyaK2sXjvFKqsLw%3D Occurrence Handle10.1002/adma.19970090712

    Article  CAS  Google Scholar 

  19. K. Christmann (1988) Surf. Sci. Rep. 9 1 Occurrence Handle10.1016/0167-5729(88)90009-X

    Article  Google Scholar 

  20. F. Darkrim A. Aoufi P. Malbrunot D Levesque (2000) J. Chem. Phys. 112 IssueIDb 5991 Occurrence Handle1:CAS:528:DC%2BD3cXhsl2itL4%3D Occurrence Handle10.1063/1.481201

    Article  CAS  Google Scholar 

  21. J. Weitkamp M. Fritz S Ernst (1995) Int. J. Hydrogen Energy 20 967 Occurrence Handle1:CAS:528:DyaK2MXpsFKrs7c%3D Occurrence Handle10.1016/0360-3199(95)00058-L

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichi Naito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naito, S., Minoshima, K. & Miyao, T. Unique adsorption and catalytic behavior of H2 and CO over hollow Silica-Rh, -Ir, and -Ru nanocomposites prepared by Reversed Micelle Technique. Top Catal 39, 131–136 (2006). https://doi.org/10.1007/s11244-006-0048-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-006-0048-z

Keywords

Navigation