Skip to main content
Log in

Ni/ADM: a high activity and selectivity to C2+OH catalyst for catalytic conversion of synthesis gas to C1-C5 mixed alcohols

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In the present paper alkali-doped molybdenum sulfide (ADM) catalysts modified by Ni were prepared and Ni promoter showed an effective promotion on the activity and C2+OH selectivity. At Ni:Mo molar ratio of 0.5, the percentage of methanol decreased sharply from 53(C-atom) to 11(C-atom) and the ratio of C2+OH/C1OH reached the maximum (8.75), which was about 10 times compared with that of traditional ADM catalyst (0.87). Calculation revealed that the additions of Ni caused the apparent activation energies for C1–3 alcohols decreased, especially for ethanol. The great deviation of methanol from the linear A-S-F distribution indicated a different reaction route which might caused by the bi-functionality of nickel, namely, the formation of corresponding precursor of alcohol (CH x ) and the strong ability of CO insertion. Characterization suggested that such a promotion was closely related to the structure of nickel of the catalyst, the simultaneous presences of aggregated particles and high-dispersed Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.N. Verkerk B. Jaeger C. Finkeldei W. Keim (1999) Appl. Catal. 186 407

    Google Scholar 

  2. A.J. Lucero R.E. Klepper W.M. O’Keefe V.K. Sethi (2001) Fuel Chemistry Division Preprints 46 IssueID2 413

    Google Scholar 

  3. A.A. Hedrick S.S.C. Chuang A. Pant A.G. Dastidar (2000) Catal. Today 55 247

    Google Scholar 

  4. A. Muramatsu T. Tatsumi H. Tominaga (1992) J. Phys. Chem. 96 1334

    Google Scholar 

  5. R.G. Herman (2000) Catal. Today 55 233

    Google Scholar 

  6. X.D. Xu B.M. Doesburg J.F. Sckolen (1987) Catal. Today 2 125

    Google Scholar 

  7. E. Tronconi N. Ferlazzo P. Forzatti I. Pasquon (1987) Ind. Eng. Chem. Res. 26 2122

    Google Scholar 

  8. H.C. Woo K.Y. Park (1991) Appl. Catal. 75 267

    Google Scholar 

  9. Quarderer G.J. Eur. Patent.119609 (1984).

  10. Z.Y. Liu X.G. Li M.R. Close E.L. Kugler J.L. Petersen D.B. Dadyburjor (1997) Ind. Eng. Chem. Res. 36 3085

    Google Scholar 

  11. Santiesteban J.G., Bogdan C.E., Herman R.G. Klier K., in’Proceedings, 9th International Congress on Catalysis, 1988, Vol. 2, p. 561.

  12. K.J. Smith R.G. Herman K. Klier (1990) Chem. Eng. Sci. 45 2639

    Google Scholar 

  13. Z.R. Li Y.L. Fu M. Jiang (1999) Appl. Catal. 187 187

    Google Scholar 

  14. E.C. Alyea D. He J. Wang (1993) Appl. Catal. 104 289

    Google Scholar 

  15. H.C. Woo Y.G. Kim (1993) Catal Lett. 20 221

    Google Scholar 

  16. Stevens R.R.. US Patent. 4882360 (1989).

  17. Z.R. Li Y.L. Fu M. Jiang Y. Xie T. Hu T. Liu (2000) Catal Lett. 65 43

    Google Scholar 

  18. J. Iranmahboob D.O. Hill H. Toghiani (2002) Appl Catal. 231 99

    Google Scholar 

  19. G.Z. Bian L. Fan Y.L. Fu K. Fujimoto (1998) Ind. Eng. Chem. Res. 37 1736

    Google Scholar 

  20. J. Iranmahboob H. Toghiani D.O. Hill F. Nadim (2002) Fuel Processing Tech. 79 71

    Google Scholar 

  21. G. Lu C.F. Zhang Y. Chang Z. Zhu Y. Ni L. Cheng F. Yu (1997) Appl. Catal. 150 243

    Google Scholar 

  22. S. Uchiyama Y. Ohbayashi M. Shibata T. Hayasaka N. Kawata T. Konishi (1988) Appl. Catal. 42 143

    Google Scholar 

  23. S.S.C. huang S.I. Pien (1989) Catal. Lett. 3 323

    Google Scholar 

  24. H.J. Qi D.B. Li C. Yang W.H. Li Y.H. Sun B. Zhong (2003) Catal. Comm. 4 339

    Google Scholar 

  25. H.J.øe Tops R. ClausenB.S. Cia C. Wivel S. Morup (1981) J. Catal. 68 433

    Google Scholar 

  26. K.T. Park J. Kong (2002) Top Catal 18 175

    Google Scholar 

  27. J. Iranmahboob D.O. Hill H. Toghiani (2001) Appl. Surf. Sci. 185 72

    Google Scholar 

  28. S. Harris R.R. Chianelli (1986) Catal J. 98 17

    Google Scholar 

  29. B.H. Upton C.C. Chen N.M. Rodriguez R.T.K. Baker (1993) J. Catal. 141 171

    Google Scholar 

  30. R. Candia B.S. Clausen H.J. Topsøe (1982) J Catal. 77 564

    Google Scholar 

  31. Delmon B., in Proceedings, 3rd International Conference on the chemistry and uses of Molybdenum, 1979, p.17.

  32. Bao J., Fu Y.L., Sun Z., Gao C. Chem. Comm. (2003) 746.

  33. G.Z. Bian Y.L. Fu Y.S. Ma (1999) Catal. Today 51 187

    Google Scholar 

  34. X.G. Li L.J. Feng Z.Y. Liu B. Zhong D.B. Dadyburjor E.L. Kugler (1998) Ind. Eng. Chem. Res. 37 3853

    Google Scholar 

  35. K.A.N. Verkerk B. Jaeger C.H. Finkeldei W. Keim (1999) Appl. Catal 186 407

    Google Scholar 

  36. K. Kishi M.W. Rorberts (1975) J. Chem. Soc. Farad. Trans. 171 1715

    Google Scholar 

  37. G.A. Somorjai (1994) Introduction to Surface Chemistry and Catalysis Wiley NewYork

    Google Scholar 

  38. T. Tatsumi A. Muramatsu K. Yokota H. Tominaoa (1989) J. Catal. 115 388

    Google Scholar 

  39. S.C. Chuang Y.H. Tian J.G. Goodwin I. Wender (1985) J Catal. 96 396

    Google Scholar 

  40. J.G. Numan C.E. Bogdan K. Kiler K.J. Smith C.W. Young R.G. Herman (1989) J. Catal. 116 195

    Google Scholar 

  41. K.J. Smith R.B. Aderson (1984) J. Catal. 85 428

    Google Scholar 

  42. J.G. Numan C.E. Bogdan K. Klier (1989) J. Catal. 116 222

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhan Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Yang, C., Li, W. et al. Ni/ADM: a high activity and selectivity to C2+OH catalyst for catalytic conversion of synthesis gas to C1-C5 mixed alcohols. Top Catal 32, 233–239 (2005). https://doi.org/10.1007/s11244-005-2901-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-005-2901-x

Keywords

Navigation