Skip to main content

Advertisement

Log in

Fischer–Tropsch principles of co-hydrogenation on iron catalysts

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The temporal changes of product composition together with changes of the catalyst in composition and structure have been investigated for Fischer–Tropsch synthesis with an alkalized precipitated iron catalyst at 250°C, 1 MPa, using a special synthesis gas with a molar H2/CO2-ratio of three. It was observed that the steady state of synthesis developed in processes of self-organization during several episodes with individual kinetic regimes. The“true FT catalyst” apparently was “constructed” at reaction conditions under complete consumption of α-iron and formation of iron carbide (Fe5C2). The magnetite phase disappeared partially and a new “unknown” (probably FeO x ) phase was formed. It has been concluded from the data of chain growth and branching probability that during self-organization only the number of sites increased but their nature remained unchanged. Strong spatial constraints appear to apply at the sites.  On iron catalysts, the FT sites are very stable, invariant against changes in reaction conditions, in contrast to FT synthesis on cobalt. There the sites show a dynamic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Schulz E. Steen Particlevan M. Claeys (1994) Stud. Surf. Sci. Catal. 81 455

    Google Scholar 

  2. Pichler H., in: Advances in Catalysis, Vol. IV, eds. Frankenburg W., Rideal E. and Komarewsky V. (Academic Press Inc., New York, 1952) p. 271.

  3. Hoogendoorn J.C. and Salomon J.M., Brit. Chem. Eng. (1957) 308 and 368.

  4. Schulz H., in:Chemierohstoffe aus Kohle, eds. Falbe J. (Georg Thieme Verlag, Stuttgart 1977) p. 272.

  5. A.P. Steynberg R.L. Espinoza B. Jager A.C. Vosloo (1999) Appl. Catal. A: General 186 41

    Google Scholar 

  6. Schulz H. and Achtsnit H.D., Revista Portuguesa de Quimica (1977) 317.

  7. H. Schulz M. Claeys S. Harms (1997) Stud. Surf. Sci. Catal. 107 193

    Google Scholar 

  8. H.H. Storch N. Golumbic R.B. Anderson (1951) The Fischer–Tropsch and Related Syntheses John Wiley & Sons Inc. New York

    Google Scholar 

  9. Dry M.E., in: Catalysis Science and Technology, eds. J.R.␣Anderson and Boudard M. (Springer Verlag, Berlin, 1981) p. 159.

  10. H. Schulz (2003) Top Catal. 26 73

    Google Scholar 

  11. Schulz H., Claeys M. Appl. Catal. A: General 186 (199) 71.

  12. C.J.H. Wilson G.P.M. Groot Particlede (1995) J. Phys. Chem. 99 7860

    Google Scholar 

  13. R.B. Anderson (1984) The Fischer–Tropsch synthesis Academic Press Orlando

    Google Scholar 

  14. T. Riedel H. Schulz G. Schaub K.-W. Jun J.-S. Hwang K.-W. Lee (2003) Top. Catal. 26 41

    Google Scholar 

  15. H. Schulz E. Steen Particlevan M. Claeys (1995) Top. Catal. 2 223

    Google Scholar 

  16. H. Schulz Zhiqin Nie (2001) Stud. Surf. Sci. Catal. 136 159

    Google Scholar 

  17. H. Schulz K. Beck E. Erich (1988) Stud. Surf. Sci. Catal. 36 457

    Google Scholar 

  18. Albers P., Angert H., Prescher G., Seybold K., St. Parker. (1999). Chem. Commun. 1619.

  19. H. Schulz W. Boehringer C. Kohl N. Rahman A. Will (1984) Entwicklung und Anwendung der Kapillar-GC-Gesamtprobentechnik für Gas/Dampf-Vielstoffgemische, DGMK-Forschungsbericht DGMK Hamburg

    Google Scholar 

  20. E. Steen Particlevan (1993) Dissertation University of Karlsruhe Karlsruhe

    Google Scholar 

  21. F. Fischer H. Koch (1932) Brennstoff-Chem. 13 61

    Google Scholar 

  22. H. Koelbel F. Engelhardt (1952) Angew. Chem. 64 54

    Google Scholar 

  23. R. Fiato E. Iglesia G.W. Rice S.L. Soled (1998) Stud. Surf. Sci. Catal. 114 339

    Google Scholar 

  24. T. Riedel S. Walter M. Claeys H. Schulz G. Schaub (1998) Stud. Surf. Sci. Catal. 114 443

    Google Scholar 

  25. H. Schulz G. Schaub M. Claeys T. Riedel S. Walter (1998) Stud. Surf. Sci. Catal. 114 159

    Google Scholar 

  26. H. Schulz Zh. Nie F. Ousmanov (2002) Catalysis Today 71 351

    Google Scholar 

  27. H. Schulz K. Beck E. Erich (1988) Fuel Process Technol. 18 293

    Google Scholar 

  28. Schulz H., Beck K. and Erich E., in: Proc. 9th Int. Congr. on Catalysis, Calgary, Vol. 2, eds. Phillips M., Ternan M. (The Chemical Institute of Canada, Ottawa 1988) p. 829.

  29. H. Schulz M. Claeys (1999) Appl. Cat. A: General 186 91

    Google Scholar 

  30. H. Pichler H. Schulz (1970) CIT 42 116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, H., Riedel, T. & Schaub, G. Fischer–Tropsch principles of co-hydrogenation on iron catalysts. Top Catal 32, 117–124 (2005). https://doi.org/10.1007/s11244-005-2883-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-005-2883-8

Keywords

Navigation