Skip to main content
Log in

Role of polyamines in plant tissue culture: An overview

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Since the era of plant tissue culture bloomed, we have started approaching from a biotechnological perspective to overcome the massive challenges like inducing embryogenesis and organogenesis, initiating rooting, increasing the number of plantlets, establishing a callus from various organs of plants and also enhancing the metabolite content which was a mind-boggling thought once upon a time. Use of various elicitors, altering the media components, the strength of media, pH, precursor feeding etc. have all contributed tremendously in the in-vitro techniques used for culturing rare, endemic and medicinal plants for the commercial purposes. Owing to the demand for the plant products and drugs, the search for the other superior novel methods to increase its quantity and quality has not been stopped. Thus, one such method is the use of chemical compounds with many amino groups which serves as an additional source of nitrogen in the media and these organic compounds are called polyamines. Polyamines are known to play a wide role in plant physiological processes helping them in differentiation, inducing totipotency, increasing cell division and also in molecular signaling. Polyamines have a versatile application in this field ranging from establishing a callus to the elicitation of secondary metabolites. Thus, polyamines can be considered as a boon to the plant tissue culture field. In this review article, we have mainly focused on the in-depth applications of major polyamines like putrescine, spermidine and spermine in the field of plant tissue culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Pas:

Polyamines

Put:

Putrescine

Spd:

Spermidine

Spm:

Spermine

IBA:

Indole-3-butyric acid

NAA:

Naphthaleneacetic acid

BA:

Benzylaminopurine

2,4-D:

2,4-Dichlorophenoxyacetic acid

DFMA:

Difluoromethylarginine

DFMO:

Difluoromethylornithine

MGBG:

Methyl-glyoxyl-bis guanylhydrazone

References

  • Adkins SW, Samosir YM, Ernawati A, Godwin ID, Drew RA (1998) Control of Ethylene and use of polyamines can optimise the conditions for somatic embryogenesis in coconut (Cocos nucifera L.) and papaya (Carica papaya L.). Acta Hortic 461:459–466

    CAS  Google Scholar 

  • Adkins SW, Samosir YMS, Nikmatullah A, Ogle H (2005) Coconut (Cocus nucifera) in vitro ecology: modifications of headspace and medium additives can optimize somatic embryogenesis. Acta Hortic 692:21–32

    Google Scholar 

  • Ahmed A, Rahman ME, Tajuddin T, Athar T, Singh M, Garg M, Ahmad S (2014) Effect of nutrient medium, phytohormones and elicitation treatment on in-vitro callus culture of Bacopa monnieri and expression of secondary metabolites. Nat Prod J 4:13–17

    CAS  Google Scholar 

  • Ajithan C, Vasudevan V, Sathish D et al (2019) The influential role of polyamines on the in vitro regeneration of pea (Pisum sativum L.) and genetic fidelity assessment by SCoT and RAPD markers. Plant Cell Tissue Organ Cult  39:245–252

    Google Scholar 

  • Akhma Z, Yasin MAT, Mahmood M, Shaharuddin NA (2015) Effects of benzyladenine purine and its interaction with polyamines on growth of Spathoglottis plicata PLBs. Turk J Bot 39:245–252

    Google Scholar 

  • Alcázar R, Planas J, Saxena T et al (2010) Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene. Plant Physiol Biochem 48:547–552

    PubMed  Google Scholar 

  • Altamura MM, Torrigiani P, Capitani F et al (1991) De novo root formation in tobacco thin layers is affected by inhibition of polyamine biosynthesis. J Exp Bot 42:1575–1582

    CAS  Google Scholar 

  • Aragão VPM, Reis RS, Silveira V, Santa-Catarina C (2017) Putrescine promotes changes in the endogenous polyamine levels and proteomic profiles to regulate organogenesis in Cedrela fissilis Vellozo (Meliaceae). Plant Cell Tissue Organ Cult 130:495–505

    Google Scholar 

  • Arena ME, Pastur GM, Benavides MP, Curvetto N (2005) Polyamines and inhibitors used in successive culture media for in vitro rooting in Berberis buxifolia. N Z J Bot 43:373–380

    Google Scholar 

  • Arun M, Subramanyam K, Theboral J, Ganapathi A, Manickavasagam M (2014) Optimized shoot regeneration for Indian soybean: the influence of exogenous polyamines. Plant Cell Tissue Organ Cult 117:305–309

    CAS  Google Scholar 

  • Ashok Kumar HG, Ravishankar BV, Murthy HN (2004) The influence of polyamines on androgenesis of Cucumis sativus L. Eur J Hortic Sci 69:201–205

    Google Scholar 

  • Aydin M, Pour AH, Haliloğlu K, Tosun M (2016) Effect of polyamines on somatic embryogenesis via mature embryo in wheat. Turk J Biol 40:1178–1184

    CAS  Google Scholar 

  • Bais HP, Ravishankar GA (2000) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Organ Cult 69:1–34

    Google Scholar 

  • Bais HP, George J, Ravishankar GA (1999) Influence of polyamines on growth of hairy root cultures of witloof chicory (Cichorium intybus L. cv. Lucknow Local) and formation of coumarins. J Plant Growth Regul 18:33–37

    CAS  PubMed  Google Scholar 

  • Bais HP, Madhusudhan R, Bhagyalakshmi N, Rajasekaran T, Ramesh BS, Ravishankar GA (2000) Influence of polyamines on growth and formation of secondary metabolites in hairy root cultures of Beta vulgaris and Tagetes patula. Acta Physiol Plant 22:151–158

    CAS  Google Scholar 

  • Bais H, Sudha G, Ravishankar G (2001) Influence of putrescine, silver nitrate and polyamine inhibitors on the morphogenetic response in untransformed and transformed tissues of Cichorium intybus and their regenerants. Plant Cell Rep 20:547–555

    CAS  Google Scholar 

  • Baron K, Stasolla C (2008) The role of polyamines during in vivo and in vitro development. Vitro Cell Dev Biol Plant 44:384–395

    CAS  Google Scholar 

  • Berberich T, Sagor GH, Tomonobu K (2015) Polyamines in plant stress response. In: Polyamines: a universal molecular nexus for growth, survival, and specialized metabolism, pp 155–168

  • Besford RT, Richardson CM, Campos JL, Tiburcio AF (1993) Effect of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves. Planta 189:201–206

    CAS  Google Scholar 

  • Burrell M, Hanfrey CC, Murray EJ, Stanley-Wall NR, Michael AJ (2010) Evolution and multiplicity of arginine decarboxylases in polyamine biosynthesis and essential role in Bacillus subtilis biofilm formation. J Biol Chem 285(50):39224–39238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carman JG, Rodney GR, Fuller J, Ghermay T, Timmis R (2005) Nutrient and hormone levels in Douglas-fir corrosion cavities, mega- gametophytes, and embryos during embryony. Can J For Res 35:2447–3245

    CAS  Google Scholar 

  • Chaturvedi R, Razdan MK, Bhojwani SS (2003) Production of haploids of neem (Azadirachta indica A. Juss.) by anther culture. Plant Cell Rep 21:531–537

    CAS  PubMed  Google Scholar 

  • Chen LF, Lu W, Sun J, Guo SR, Zhang ZX, Yang YJ (2011) Effects of exogenous spermidine on photosynthesis and carbohydrate accumulation in roots and leaves of cucumber (Cucumis sativus L.) seedlings under salt stress. J Nanjing Agric Univ 34(3):31–36

    Google Scholar 

  • Cheng L, Zou Y, Ding S et al (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 51:489–499

    CAS  PubMed  Google Scholar 

  • Chi G, Lin W, Lee JEE, Pua E (1994) Role of polyamines on de novo shoot morphogenesis from cotyledons. Plant Cell Rep 13:323–329

    CAS  PubMed  Google Scholar 

  • Chiancone B, Tassoni A, Bagni N, Germanà MA (2006) Effect of polyamines on in vitro anther culture of Citrus clementina Hort. ex Tan. Plant Cell Tissue Organ Cult 87:145–153

    CAS  Google Scholar 

  • Chong Perez B, Reyes M, Rojas L, Ocana B, Perez B, Kosky Rafael G, Angenon G (2012) Establishment of embryogenic cell suspension cultures and Agrobacterium-mediated transformation in banana cv. ‘Dwarf Cavendish’ (Musa AAA): effect of spermidine on transformation efficiency. Plant Cell Tissue Organ Cult 111:79–90

    CAS  Google Scholar 

  • Couee I, Hummel I, Sulmon C, Gouesbet G, El Amrani A (2004) Involvement of polyamines in root development. Plant Cell Tissue Organ Cult 76:1–10

    CAS  Google Scholar 

  • De Moura LC, Xavier A, Cláudia A, Batista DS, Miranda NA, Otoni WC (2019) Effect of calcium, BAP and putrescine on somatic embryo induction in juvenile explants of Eucalyptus grandis × E urophylla hybrids. Aust J Crop Sci 13:513–519

    Google Scholar 

  • De-La-Peña C, Galaz-Ávalos RM, Loyola-Vargas VM (2008) Possible role of light and polyamines in the onset of somatic embryogenesis of Coffea canephora. Mol Biotechnol 39:215–224

    PubMed  Google Scholar 

  • Dey A, Gupta K, Gupta B (2014) Role of polyamines in plant–pathogen interactions. In: Anjum NA, Gill SS, Gil R (eds) Plant adaptation to environmental change. CAB International, Wallingford, pp 222–244

    Google Scholar 

  • Dey A, Hazra AK, Nongdam P, Nandy S, Tikendra L, Mukherjee A, Banerjee S, Mukherjee S, Pandey DK (2019) Enhanced bacoside content in polyamine treated in-vitro raised Bacopa monnieri (L.) Wettst. S Afr J Bot 123:259–269

    CAS  Google Scholar 

  • Diwan R, Malpathak N (2008) Novel technique for scaling up of micropropagated Ruta graveolens shoots using liquid culture systems: a step towards commercialization. New Biotechnol 25(1):85–91

    CAS  Google Scholar 

  • Doctrinal M, Sangwan RS, Sangwan-Norreel BS (1989) In vitro gynogenesis in Beta vulgaris L.: Effects of plant growth regulators, temperature, genotypes and season. Plant Cell Tissue Organ Cult 17:1–12

    Google Scholar 

  • Ebrahimzadeh H, Shariatpanahi ME, Ahmadi B, Soltanloo H, Lotfi M, Zarifi E (2018) Efficient parthenogenesis induction and in vitro haploid plant regeneration in cucumber (Cucumis sativus L.) using putrescine, spermidine, and cycocel. J Plant Growth Regul 37:1127–1134

    CAS  Google Scholar 

  • El-dawayati MM, Ghazzawy HS, Munir M (2018) Somatic embryogenesis enhancement of date palm cultivar Sewi using different types of polyamines and glutamine amino acid concentration under in-vitro solid and liquid media conditions. Int J Biosci 12:149–159

    CAS  Google Scholar 

  • Emilio M, De G, Ida J, Eddo R (2007) Efficient method of micropropagation and in vitro rooting of teak (Tectona grandis L.) focusing on large-scale industrial plantations. Ann For Sci 64:73–78

    Google Scholar 

  • Evans PT, Malmberg RL (1989) Do Polyamines have roles in plant development? Annu Rev Plant Physiol Plant Mol Biol 40:235–269

    CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–221

    Google Scholar 

  • Fazilati M, Forghani AH (2015) The role of polyamine to increasing growth of plant: As a key factor in health crisis. Int J Health Syst Disaster Manag 3:89–94

    Google Scholar 

  • Flores HE, Galston AW (1982) Polyamines and plant stress: Activation of putrescine biosynthesis by osmotic shock. Science 217:1259–1261

    CAS  PubMed  Google Scholar 

  • Fraguas CB, Villa F, Lima GPP (2009) Evaluation of exogenous application of polyamines on callus growth of Mangaba tree (Hancornia speciosa Gomes). Rev Bras Frutic 31:1206–1210

    Google Scholar 

  • Ganesan M, Narayanasamy J (2006) Influence of cytokinis, auxins and polyamines on in vitro mass multiplication of cotton (Gossypium hirsutum L.cv.SVPR2). Indian J Exp Biol 44:506–513

    CAS  PubMed  Google Scholar 

  • Ghosh B (2000) Polyamines and plant alkaloids. Indian J Exp Biol 38:1086–1091

    CAS  PubMed  Google Scholar 

  • Gonzalez ME, Marco F, Minguet EG et al (2011) Perturbation of spermine synthase gene expression and transcript profiling provide new insights on the role of the tetraamine spermine in Arabidopsis defense against pseudomonas viridiflava. Plant Physiol 156:2266–2277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gow WP, Chen JT, Chang WC (2008) Influence of growth regulators on direct embryo formation from leaf explants of Phalaenopsis orchids. Acta Physiol Plant 30:507

    CAS  Google Scholar 

  • Hao G, Ji H, Li Y, Shi R, Wang J, Feng L, Huang L (2012) Exogenous ABA and polyamines enhanced salvianolic acids contents in hairy root cultures of Salvia miltiorrhiza Bge.f.alba. Plant Omics J 5:446–452

    CAS  Google Scholar 

  • Hausman JF, Gevers C, Gaspar T (1994) Involvement of putrescine in the inductive rooting phase of poplar shoots raised in vitro. Physiol Plant 92:201–206

    CAS  Google Scholar 

  • He L, Nada K, Tachibana S (2002) Effects of spermidine pretreatment through the roots on growth and photosynthesis of chilled cucumber plants (Cucumis sativus L.). Chem Pharm Bull 71:490–498

    CAS  Google Scholar 

  • Hema BP, Murthy HN (2008) Improvement of in vitro androgenesis in niger using amino acids and polyamines. Biol Plant 52:121–125

    CAS  Google Scholar 

  • Hwang SJ, Kim KS, Pyo BS, Hwang B (1999) Saponin production by hairy root cultures of Panax ginseng CA meyer: influence of PGR and polyamines. Biotechnol Bioprocess Eng 4:309–312

    CAS  Google Scholar 

  • Ioannidis NE, Kotzabasis K (2007) Effects of polyamines on the functionality of photosynthetic membrane in vivo and in vitro. Biochim Biophys Acta 1767:1372–1382

    CAS  PubMed  Google Scholar 

  • Jarvis BC, Shannon PRM, Yasmin S (1983) Involvement of polyamines with adventitious root development in stem cuttings of mung bean. Plant Cell Physiol 24:677–683

    CAS  Google Scholar 

  • Jiménez-Bremont JF, Marina M, Guerrero-González ML, Rossi FR, Sánchez-Rangel D, Rodríguez-Kessler M, Ruiz OA, Gárriz A (2014) Physiological and molecular implications of plant polyamine metabolism during biotic interactions. Front Plant Sci 5:95

    PubMed  PubMed Central  Google Scholar 

  • Joshee N, Harris D, Yadav A, Yadav AK (2007) Influence of explant selection and culture conditions on organogenesis and germplasm conservation in Bacopa monnieri (L.) Wettst. Acta Hortic 756:119–128

    CAS  Google Scholar 

  • Kabir A, Suresh Kumar G (2013) Binding of the biogenic polyamines to deoxyribonucleic acids of varying base composition: base specificity and the associated energetics of the interaction. PLoS ONE 

    Article  PubMed  PubMed Central  Google Scholar 

  • Kakkar RK, Nagar PK, Ahuja PS, Rai VK (2000) Polyamines and plant morphogenesis. Biol Plant 43:1–11

    CAS  Google Scholar 

  • Kaur-Sawhney R, Tiburcio AF, Galston AW (1988) Spermidine and flower-bud differentiation in thin-layer explants of tobacco. Planta 173:282–284

    CAS  PubMed  Google Scholar 

  • Kaur-Sawhney R, Tiburcio AF, Altabella T, Galston AW (2003) Polyamines in plants: an overview. J Cell Mol Biol 2:1–12

    Google Scholar 

  • Kaur-sawhney R, Kandpal G, Mcgonigle B, Galston AW (1990) Further experiments on spermidine-mediated floral-bud formation in thin-layer explants of Wisconsin 38 tobacco. Planta 181:212–215

    CAS  PubMed  Google Scholar 

  • Kevers C, Le Gal N, Monteiro M et al (2000) Somatic embryogenesis of Panax ginseng in liquid cultures: a role for polyamines and their metabolic pathways. Plant Growth Regul 31:209–214

    CAS  Google Scholar 

  • Kevers C, Gaspar T, Dommes J (2002) The beneficial role of different auxins and polyamines at successive stages of somatic embryo formation and development of Panax ginseng in vitro. Plant Cell Tissue Organ Cult 70:181–188

    CAS  Google Scholar 

  • Khalil SA, Kamal N, Sajid M, Ahmad Nisar Zamir R, Ahmad Naveed Ali S (2016) Synergism of polyamines and plant growth regulators enhanced morphogenesis, steviosides content, and production of commercially important natural antioxidants in Stevia rebaudiana Bert. Vitro Cell Dev Biol Plant 52:174–184

    CAS  Google Scholar 

  • Khosh-Khui M, Sink KC (1982) Rooting-enhancement of Rosa hybrid for tissue culture propagation. Sci Hortic 17:371–376

    CAS  Google Scholar 

  • Kim TE, Kim SK, Han TJ et al (2002) ABA and polyamines act independently in primary leaves of cold-stressed tomato (Lycopersicon esculentum). Physiol Plant 115:370–376

    CAS  PubMed  Google Scholar 

  • Kim JK, Baskar TB, Park SU (2016) Silver nitrate and putrescine enhance in vitro shoot organogenesis in Polygonum tinctorium. Biosci Biotechnol Res Asia 13:53–58

    Google Scholar 

  • Krishnamurthy R (1991) Amelioration of salinity effect in salt tolerant rice (oryza sativa l.) by foliar application of putrescine. Plant Cell Physiol 32:699–703

    CAS  Google Scholar 

  • Kumar V, Sharma EA, Chayapathy EB, Prasad N, Bhaskar H, Parvatam GE, Gokare GE, Ravishankar GA (2007) Direct shoot bud induction and plant regeneration in Capsicum frutescents Mill.: influence of polyamines and polarity. Acta Physiol Plant 29:11–18

    CAS  Google Scholar 

  • Kumar V, Giridhar P, Chandrashekar A, Ravishankar GA (2008) Polyamines influence morphogenesis and caffeine biosynthesis in in vitro cultures of Coffea canephora P. ex Fr. Acta Physiol Plant 30:217–223

    CAS  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  CAS  PubMed  Google Scholar 

  • Laukkanen H, Sarjala T (1997) Effect of exogenous polyamines on scots pine callus in vitro. J Plant Physiol 150:167–172

    CAS  Google Scholar 

  • Lee SY, Baskar TB, Kim JK, Park SU (2016) Enhanced shoot organogenesis in Aloe saponaria following treatment with ethylene inhibitors and polyamines. Biosci Biotechnol Res Asia 13:17–21

    Google Scholar 

  • Liu Y, Liang H, Lv X et al (2016) Effect of polyamines on the grain filling of wheat under drought stress. Plant Physiol Biochem 100:113–129

    CAS  PubMed  Google Scholar 

  • Malabadi Ravindra B, Nataraja K (2007) Putrescine influences somatic embryogenesis and plant regeneration in Pinus gerardiana Wall. Am J Plant Physiol 2:107–114

    Google Scholar 

  • Martı G, Curvetto EEÆN (2007) Role of polyamines during in vitro rhizogenesis of Nothofagus nervosa using successive culture media. New For 34:83–93

    Google Scholar 

  • Martin KP (2003) Plant regeneration through somatic embryogenesis on Holostemmaada-kodien, a rare medicinal plant. Plant Cell Tissue Organ Cult 72:79–82

    CAS  Google Scholar 

  • Martin-Tanguy J, Carre M (1993) Polyamines in grapevine microcuttings cultivated in vitro. Effects of amines and inhibitors of polyamine biosynthesis on polyamine levels and microcutting growth and development. Plant Growth Regul 13:269–280

    CAS  Google Scholar 

  • Martnez LE, Aguero CB, Lopez ME, Galmarini CR (2000) Improvement of in vitro gynogenesis induction in onion (Allium cepa L.) using polyamines. Plant Sci 156:221–226

    Google Scholar 

  • Mattoo AK, Fatima T, Upadhyay RK, Handa AK (2015) Polyamines in plants: biosynthesis from arginine, and metabolic, physiological and stress-response roles. In: D’Mello JPF (ed) Amino acids in higher plants. CAB International, Wallingford, pp 177–194

    Google Scholar 

  • Minocha SC, Minocha R (1995) Role of polyamines in somatic embryogenesis. In: Bajaj YPS (ed) Somatic embryogenesis and synthetic seed I, biotechnology in agriculture and forestry. Springer, Berlin, pp 53–70

    Google Scholar 

  • Mustafavi SH, Naghdi Badi H, Sekara A et al (2018) Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiol Plant 40:102

    Google Scholar 

  • Nakagawa R, Ogita S, Kubo T, Funada R (2006) Effect of polyamines and L-ornithine on the development of proembryogenic masses of Cryptomeria japonica. Plant Cell Tissue Organ Cult 85:229–234

    CAS  Google Scholar 

  • Niemi K, Sarjala T, Chen X, Häggman H (2002) Spermidine and methylglyoxal bis(guanylhydrazone) affect maturation and endogenous polyamine content of Scots pine embryogenic cultures. J Plant Physiol 159:1155–1158

    CAS  Google Scholar 

  • Niemi K, Sarjala T, Chen X, Häggman H (2007) Spermidine and the ectomycorrhizal fungus Pisolithus tinctorius synergistically induce maturation of Scots pine embryogenic cultures. J Plant Physiol 164:629–635

    CAS  PubMed  Google Scholar 

  • Nikam TD, Ghorpade RP, Nitnaware KM, Ahire ML, Lokhande VH, Chopra A (2013) Micropropagation and non-steroidal anti-inflammatory and anti-arthritic agent boswellic acid production in callus cultures of Boswellia serrata Roxb. Physiol Mol Biol Plants 19:105–116

    CAS  PubMed  Google Scholar 

  • Palavan-ünsal N (1987) Polyamine metabolism in the roots of Phaseolus vulgaris. Interaction of the inhibitors of polyamine biosynthesis with putrescine in growth and polyamine biosynthesis. Plant Cell Physiol 28:565–572

    Google Scholar 

  • Parale A, Barmukh R, Nikam T (2010) Influence of organic supplements on production of shoot and callus biomass and accumulation of bacoside in Bacopa monnieri (L.) Pennell. Physiol Mol Biol Plants 16:167–175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park E, Bae H, Park WT, Kim YB, Chae SC, Park SU (2012) Improved shoot organogenesis of gloxinia (Sinningia speciosa) using silver nitrate and putrescine treatment. Plant OMICS 5:6–9

    CAS  Google Scholar 

  • Parvin S, Lee OR, Sathiyaraj G, Khorolragchaa A, Kim YJ, Yang DC (2014) Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Genetics 53:70–78

    Google Scholar 

  • Paul A, Mitter K, Raychaudhuri SS (2009) Effect of polyamines on in vitro somatic embryogenesis in Momordica charantia L. Plant Cell Tissue Organ Cult 97:303–311

    CAS  Google Scholar 

  • Ponce MT, Guinazu M, Tizio R (2002a) Effect of putrescine on embryo development in the stenospermocarpic grape cvs Emperatriz and Fantasy. Vitis 41:53–54

    CAS  Google Scholar 

  • Ponce MT, Guinazu M, Tizio R (2002b) Improved in vitro embryo development of stenospermic grape by putrescine. Biocell 26:263–266

    PubMed  Google Scholar 

  • Pottosin I, Shabala S (2014) Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling. Front Plant Sci 5:1–16

    Google Scholar 

  • Protacio C, Flores H (1992) The role of polyamines in potato tuber formation. In Vitro Cell Dev Biol 28:81–86

    Google Scholar 

  • Rajesh MK, Karun A (2014) Polyamine-induced somatic embryogenesis and plantlet regeneration in vitro from plumular explants of dwarf cultivars of coconut (Cocos nucifera). Indian J Agric Sci 84:527–530

    Google Scholar 

  • Rajesh MK, Radha E, Karun A, Parthasarathy VA (2003) Plant regeneration from embryo-derived callus of oil palm—the effect of exogenous polyamines. Plant Cell Tissue Organ Cult 75:41–47

    CAS  Google Scholar 

  • Redha A, Suleman P (2011) Effects of exogenous application of polyamines on wheat anther cultures. Plant Cell Tissue Organ Cult  105:345–353

    CAS  Google Scholar 

  • Reis RS, de Vale EM, Heringer AS, Santa-Catarina C, Silveira V (2016) Putrescine induces somatic embryo development and proteomic changes in embryogenic callus of sugarcane. J Proteom 130:170–179

    CAS  Google Scholar 

  • Rey M, Diaz Sala C, Roberto R (1994) Exogenous polyamines improve rooting of hazel microshoots. Plant Cell Tissue Organ Cult 36:303–308

    CAS  Google Scholar 

  • Rezvanypour S, Hatamzadeh A, Elahinia SA, Asghari HR (2015) Exogenous polyamines improve mycorrhizal development and growth and flowering of Freesia hybrida. J Hortic Res 23(2):17–25

    CAS  Google Scholar 

  • Rodríguez AA, Maiale SJ, Menéndez AB, Ruiz OA (2009) Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. J Exp Bot 60:4249–4262

    PubMed  Google Scholar 

  • Rodríguez-Kessler M, Ruiz OA, Maiale S et al (2008) Polyamine metabolism in maize tumors induced by Ustilago maydis. Plant Physiol Biochem 46:805–814

    PubMed  Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160:869–875

    CAS  PubMed  Google Scholar 

  • Rubio-rodríguez E, Trejo-tapia G, López-laredo AR, Medina-pérez V, Trejo-espino JL (2019) Influence of spermine and nitrogen deficiency on growth and secondary metabolites accumulation in Castilleja tenuiflora Benth. cultured in a RITA ® temporary immersion system. Eng Life Sci 19:944–954

    PubMed  PubMed Central  Google Scholar 

  • Sabapathy S, Nair H (1992) Invitro propagation of taro, with spermine, arginine, and ornithine. Plant Cell Rep 11:290–294

    CAS  PubMed  Google Scholar 

  • Sagor GHM, Berberich T, Takahashi Y et al (2013) The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes. Transgenic Res 22:595–605

    CAS  PubMed  Google Scholar 

  • Saiprasad GVS, Raghuveer P, Khetarpal S, Chandra R (2004) Effect of various polyamines on production of protocorm-like bodies in orchid—Dendrobium ‘Sonia.’ Sci Hortic 100:161–168

    CAS  Google Scholar 

  • Sakhanokho HF, Ozias-Akins P, Lloyd MO, Chee PW (2005) Putrescine enhances somatic embryogenesis and plant regeneration in upland cotton. Plant Cell Tissue Organ Cult 81:91–95

    CAS  Google Scholar 

  • Sathish D, Vasudevan V, Theboral J, Elayaraja D (2018) Efficient direct plant regeneration from immature leaf roll explants of sugarcane (Saccharum officinarum L.) using polyamines and assessment of genetic fidelity by SCoT markers. In Vitro Cell Dev Biol Plant 54:399–412

    CAS  Google Scholar 

  • Sathish D, Theboral J, Vasudevan V, Pavan G, Ajithan C, Appunu C, Manickavasagam M (2020) Exogenous polyamines enhance somatic embryogenesis and Agrobacterium tumefaciens-mediated transformation efficiency in sugarcane (Saccharum spp. hybrid). Vitro Cell Dev Biol Plant 56:29–40

    CAS  Google Scholar 

  • Satish L, Rency AS, Rathinapriya P, Ceasar SA, Pandian S, Rameshkumar R, Rao TB, Balachandran SM, Ramesh M (2016) Influence of plant growth regulators and spermidine on somatic embryogenesis and plant regeneration in four Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn). Plant Cell Tissue Organ Cult  124:15–31

    CAS  Google Scholar 

  • Scholten HJ (1998) Effect of polyamines on the growth and development of some horticultural crops in micropropagation. Sci Hortic 77:83–88

    CAS  Google Scholar 

  • Serafini-Fracasini D, Di Sandro A, Del Duca S (2010) Spermine delays leaf senescence in Lactuca sativa and prevents the decay of chloroplast photosystems. Plant Physiol Biochem 48:602–611

    Google Scholar 

  • Setia N, Setia RC (2018) Polyamines: an overview and prospects in crop improvement. Crop Improv Strateg App 376–393

  • Shalaby TA (2007) Factors affecting haploid induction through in vitro gynogenesis in summer squash (Cucurbita pepo L.). Sci Hortic 115:1–6

    Google Scholar 

  • Sharma M, Gupta R, Khajuria RK, Mallubhotla S, Ahuja A (2015) Bacoside biosynthesis during in vitro shoot multiplication in Bacopa monnieri (L.) Wettst. grown in Growtek and air lift bioreactor. Indian J Biotechnol 14:547–551

    CAS  Google Scholar 

  • Shen HJ, Galston AW (1985) Correlations between polyamine ratios and growth patterns in seedling roots. Plant Growth Regul 3:353–363

    CAS  PubMed  Google Scholar 

  • Shetty K, Korus Roger A, Crawford DL (1989) Growth kinetics and phenolics production in Glycine Max cell suspension cultures: effect of microbial elicitor, calcium, polyamines, and organic osmolytes. Appl Biochem Biotechnol 20–21:825–843

    Google Scholar 

  • Silveira V, Santa-Catarina C, Tun NN, Scherer GFE, Handro W, Guerra MP, Floh EIS (2006) Polyamine effects on the endogenous polyamine contents, nitric oxide release, growth and differentiation of embryogenic suspension cultures of Araucaria angustifolia (Bert.) O. Ktze. Plant Sci 171:91–98

    CAS  Google Scholar 

  • Sivanandhan G, Salammal T (2011) The effect of polyamines on the efficiency of multiplication and rooting of Withania somnifera (L.) Dunal and content of some withanolides in obtained plants. Acta Physiol Plant 33:2279–2288

    CAS  Google Scholar 

  • Srivastava MNS (2017) Elicitation: a stimulation of stress in in vitro plant cell / tissue cultures for enhancement of secondary metabolite production. Phytochem Rev 16:1227–1252

    Google Scholar 

  • Steiner N, Santa-Catarina C, Silveira V, Floh EIS, Guerra MP (2007) Polyamine effects on growth and endogenous hormones levels in Araucaria angustifolia embryogenic cultures. Plant Cell Tissue Organ Cult 89:55–62

    CAS  Google Scholar 

  • Sudha G, Ravishankar GA (2003) Putrescine facilitated enhancement of capsaicin production in cell suspension cultures of Capsicum frutescens. J Plant Physiol 160:339–346

    CAS  PubMed  Google Scholar 

  • Sundararajan S, Sivakumar HP, Nayeem S et al (2020) Influence of exogenous polyamines on somatic embryogenesis and regeneration of fresh and long-term cultures of three elite indica rice cultivars. Cereal Res Commun 

    Article  Google Scholar 

  • Sunderland N (1974) Anther culture: a progress report. Sci Prog 59:527–549

    Google Scholar 

  • Tabart J, Franck T, Kevers C, Dommes J (2015) Effect of polyamines and polyamine precursors on hyperhydricity in micropropagated apple shoots. Plant Cell Tissue Organ Cult 120:11–18

    CAS  Google Scholar 

  • Takahashi T, Kakehi J (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105:1–6

    CAS  PubMed  Google Scholar 

  • Takeda T, Hayakawa F, Oe K, Matsuoka H (2002) Effects of exogenous polyamines on embryogenic carrot cells. Biochem Eng J 12:21–28

    CAS  Google Scholar 

  • Tang W, Newton RJ (2005) Polyamines promote root elongation and growth by increasing root cell division in regenerated Virginia pine (Pinus virginiana Mill.) plantlets. Plant Cell Rep 24:581–589

    CAS  PubMed  Google Scholar 

  • Tang W, Newton RJ, Outhavong V (2004) Exogenously added polyamines recover browning tissues into normal callus cultures and improve plant regeneration in pine. Physiol Plant 122:386–395

    CAS  Google Scholar 

  • Tarenghi E, Carr M (1995) Effects of inhibitors of polyamine biosynthesis and of polyamines on strawberry microcutting growth and development. Plant Cell Tissue Organ Cult 42:47–55

    CAS  Google Scholar 

  • Thiruvengadam M (2012) Influence of polyamines on in vitro organogenesis in bitter melon (Momordica charantia L.). J Med Plants Res 6:3579–3585

    CAS  Google Scholar 

  • Thiruvengadam M, Praveen N, Kim EH, Chung IM, Rekha K, Jayabalan N (2013) Effect of exogenous polyamines enhances somatic embryogenesis via suspension cultures of spine gourd (Momordica dioica Roxb. ex. Willd.). Aust J Crop Sci 7:446–453

    CAS  Google Scholar 

  • Todorova D, Katerova Z, Sergiev I, Alexieva V (2014) Polyamines - involvement in plant stress tolerance and adaptation. CABI, Wallingford, pp 194–221

    Google Scholar 

  • Torrigiani P, Altamura MM, Capitani F et al (1989) De novo root formation in thin cell layers of tobacco: changes in free and bound polyamines. Physiol Plant 77:294–301

    CAS  Google Scholar 

  • Vasudevan A, Selvaraj N, Ganapathi A (2008) Leucine and spermidine enhance shoot differentiation in cucumber (Cucumis sativus L.). Vitro Cell Dev Biol Plant 44:300–306

    CAS  Google Scholar 

  • Vasudevan V, Subramanyam K, Elayaraja D (2017) Assessment of the efficacy of amino acids and polyamines on regeneration of watermelon (Citrullus lanatus Thunb.) and analysis of genetic fidelity of regenerated plants by SCoT and RAPD markers. Plant Cell Tissue Organ Cult 8:1–7

    CAS  Google Scholar 

  • Venkatachalam L, Bhagyalakshmi N (2008) Spermine-induced morphogenesis and effect of partial immersion system on the shoot cultures of Banana. Appl Biochem Biotechnol 151:502–511

    CAS  PubMed  Google Scholar 

  • Viu AFM, Viu MA, Tavares AR, Vianello F, Lima GPP (2009a) Endogenous and exogenous polyamines in the organogenesis in Curcuma longa L. Sci Hortic 121:501–504

    CAS  Google Scholar 

  • Viu AFM, Viu MAO, Tavares AR et al (2009b) Endogenous and exogenous polyamines in the organogenesis in Curcuma longa L. Sci Hortic 121:501–504

    CAS  Google Scholar 

  • Walters DR (2003) Polyamines and plant disease. Phytochemistry 64:97–107

    CAS  PubMed  Google Scholar 

  • Wang G, Xu Z, Chia TF, Chua NH (1993) In Vitro flowering of orchid (Dendrobium Candidum). Current Plant Sci Biotechnol Agric 15:373–378

    CAS  Google Scholar 

  • Wolff EC, Park MH (2015) Role of the polyamine spermidine as a pre-cursor for hypusine modification in eIF5A. In: Kusano T, Suzuki H (eds) Polyamines. Springer, Tokyo, pp 121–130

    Google Scholar 

  • Yoshioka T, Yamagata H, Jthoh A, Deno H, Fujita Y (1989) Effects of exogenous polyamines on tropane alkaloid production by a root culture of Duboisia myoporoides. Planta Med 55:523–524

    CAS  PubMed  Google Scholar 

  • Zhu C, Chen Z (2005) Role of polyamines in adventitious shoot morphogenesis from cotyledons of cucumber in vitro. Plant Cell Tissue Organ Cult 81:45–53

    CAS  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Miss. Smita Dhantal, PhD Scholar, Dept. of English and Cultural Studies, CHRIST (Deemed To Be University) for proof reading the article and commenting on the grammatical and linguistic aspects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Nagella.

Additional information

Communicated by Sergio J. Ochatt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakesh, B., Sudheer, W.N. & Nagella, P. Role of polyamines in plant tissue culture: An overview. Plant Cell Tiss Organ Cult 145, 487–506 (2021). https://doi.org/10.1007/s11240-021-02029-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-021-02029-y

Keywords

Navigation