Skip to main content
Log in

Co(II) and Cu(II) Schiff base complexes of bis(N-(4-diethylamino-2-methylphenyl)-3,5-di-tert-butylsalicylaldimine): Electrochemical and X-ray structural study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Copper(II) and cobalt(II) complexes of salicylaldimine obtained by the condensation of N,N-diethyl-2-methyl-1,4-phenylenediamine with 3,5-di-tert-butyl-2-hydroxybenzaldehyde have been synthesized and characterized by elemental analyses, magnetic susceptibility measurements, cyclic voltammetry, and FT-IR and UV–Vis spectroscopy. The molecular structure of the title copper(II) complex was determined by the single crystal X-ray diffraction technique. The Cu(II) center is coordinated by four atoms of the donor set in a compressed tetrahedral trans-[N2O2] environment, which can be essentially ascribed to the presence of bulky fragments of the ligand. The computed bond valences of the copper verify +2 oxidation state and indicate that the copper bonds, in particular Cu–N bonds, are elongated due to steric effects from bulky substituents in the ligands, N-(4-diethylamino-2-methylphenyl). Intermolecular C–H···π interactions leading to centrosymmetric synthons serve to stabilize periodic organization of the molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Djebbar SS, Benali BO, Deloume JP (1997) Polyhedron 16:2175. doi:10.1016/S0277-5387(96)00555-4

    Article  Google Scholar 

  2. Bhattacharyya P, Parr J, Ross A (1998) J Chem Soc Dalton Trans 3149. doi:10.1039/a806058d

  3. He L, Gou SH, Shi QF (1999) J Chem Crystallogr 29:207. doi:10.1023/A:1009578329008

    Article  CAS  Google Scholar 

  4. Wu JC, Tang N, Liu WS, Tan MY, Chan ASC (2001) Chin Chem Lett 12:757

    CAS  Google Scholar 

  5. Herzfeld R, Nagy P (1999) Spectrosc Lett 31:57. doi:10.1080/00387019909349967

    Article  Google Scholar 

  6. Temel H, İlhan S, Şekerci M, Ziyadanoğulları R (2002) Spectrosc Lett 35:219. doi:10.1081/SL-120003807

    Article  CAS  Google Scholar 

  7. Djebbar SS, Benali BO, Deloume JP (1998) Transit Met Chem Kyoto 23:443

    Article  Google Scholar 

  8. Hamada YJ (1997) IEEE Trans Electron Dev 44:1208. doi:10.1109/16.605456

    Article  CAS  Google Scholar 

  9. Lacroix PG, Averseng F, Malfant I, Nakatani K (2004) Inorg Chim Acta 357:3825. doi:10.1016/j.ica.2004.03.004

    Article  CAS  Google Scholar 

  10. Holm RH, O’Connor MJ (1971) Prog Inorg Chem 14:325

    Google Scholar 

  11. Jazdzewski BA, Holland PL, Pink M, Yong VG, Spencer DJE, Tolman WB (2001) Inorg Chem 40:6097. doi:10.1021/ic010615c

    Article  CAS  Google Scholar 

  12. Canali L, Sherrington DC (1999) Chem Soc Rev 28:85. doi:10.1039/a806483k

    Article  CAS  Google Scholar 

  13. Costes JP, Dahan F, Dupuis A (2000) Inorg Chem 39:165. doi:10.1021/ic990865h

    Article  CAS  Google Scholar 

  14. Mazurek W, Berry KJ, Murray KS, O’Connor MJ, Snow MR, Wedd AG (1982) Inorg Chem 21:3071. doi:10.1021/ic00138a029

    Article  CAS  Google Scholar 

  15. Katsuki T (1996) J Mol Cat A 113:87. doi:10.1016/S1381-1169(96)00106-9

    Article  CAS  Google Scholar 

  16. Cameron PA, Gibson VC, Redshaw C, Segal JA, White AJP, Williams DJ (2002) J Chem Soc Dalton Trans 410.

  17. Kasumov VT, Medjidov AA, Golubeva IA, Vihsnyakova TI, Shubina DV, Rzaev RZ (1991) Rus J Coord 17:1698

    CAS  Google Scholar 

  18. Johnson LK, Killian CM, Brookhart M (1995) J Am Chem Soc 117:6414. doi:10.1021/ja00128a054

    Article  CAS  Google Scholar 

  19. Johnson LK, Mecking S, Brookhart M (1996) J Am Chem Soc 118:267. doi:10.1021/ja953247i

    Article  CAS  Google Scholar 

  20. Abu-Surrah AS, Lappalainen K, Piironen U, Lehmus P, Repo T, Leskela M (2002) J Organomet Chem 648:55. doi:10.1016/S0022-328X(01)01418-8

    Article  CAS  Google Scholar 

  21. Nielsen DJ, Cavell KJ, Skelton BW, White AH (2006) Inorg Chim Acta 359:1855. doi:10.1016/j.ica.2005.07.049

    Article  CAS  Google Scholar 

  22. Araya L, Vargas J, Costamagna J (1986) Transit Met Chem Kyoto 11:312

    Article  CAS  Google Scholar 

  23. Costamagna J, Vargas J, Latorre R, Alvarado A, Mena G (1992) Coord Chem Rev 119:67. doi:10.1016/0010-8545(92)80030-U

    Article  CAS  Google Scholar 

  24. Oter O, Ertekin K, Kılınçarslan R, Ulusoy M, Çetinkaya, B (2007) Dyes Pigments 74:730. doi:10.1016/j.dyepig.2006.05.006

    Article  CAS  Google Scholar 

  25. Hodgson DJ (1975) Prog Inorg Chem 19:173. doi:10.1002/9780470166208.ch4

    Article  CAS  Google Scholar 

  26. Larrow JF, Jacobsen EN, Gao Y, Hong Y, Nie X, Zepp CM (1994) J Org Chem 59:1939. doi:10.1021/jo00086a062

    Article  CAS  Google Scholar 

  27. Blessing RH (1995) Acta Crystallogr A51:33

    CAS  Google Scholar 

  28. Otwinowski Z, Minor W (1997) Methods in enzymology, In: Carter CW Jr, Sweet RM (eds) Macromolecular crystallography, Part A, vol. 276. Academic Press, New York pp 307–326

    Chapter  Google Scholar 

  29. Farrugia LJ (1999) J Appl Cryst 30:837. doi:10.1107/S0021889899006020

    Article  Google Scholar 

  30. Sheldrick GM (2008) Acta Crystallogr A64:112

    CAS  Google Scholar 

  31. Taş E, Aslanoğlu M, Güler M, Ulusoy M (2004) J Coord Chem 57:583. doi:10.1080/00958970410001697239

    Article  CAS  Google Scholar 

  32. Garg BS, Singh PK, Sharma JL (2000) Synth React Inorg Met-Org Chem Kyoto 30:803

    CAS  Google Scholar 

  33. Sinn E, Harris CM (1969) Coord Chem Rev 4:391. doi:10.1016/S0010-8545(00)80080-6

    Article  CAS  Google Scholar 

  34. Sacconi L, Ciampolini M, Maggio F, Cavasino FP (1962) J Am Chem Soc 84:3246. doi:10.1021/ja00876a005

    Article  CAS  Google Scholar 

  35. McKelvey RD (1987) J Chem Educ 64:497

    Article  CAS  Google Scholar 

  36. Colchoubian H, Waltz WL, Quail JW (1999) Can J Chem 77:37. doi:10.1139/cjc-77-1-37

    Article  Google Scholar 

  37. Ledbetter JW (1966) J Phys Chem 70:2245. doi:10.1021/j100879a027

    Article  CAS  Google Scholar 

  38. Guangbin W (1999) Spectrosc Lett 32:1061. doi:10.1080/00387019909350017

    Article  Google Scholar 

  39. Fraser C, Bosnich B (1994) Inorg Chem 33:338. doi:10.1021/ic00080a024

    Article  CAS  Google Scholar 

  40. Amundsen AR, Whelan J, Bosnich B (1977) J Am Chem Soc 99:6730. doi:10.1021/ja00462a042

    Article  CAS  Google Scholar 

  41. Figgis BR, Nyholm RS (1959) J Chem Soc 338. doi:10.1039/jr9590000338

  42. Vilas-Boas M, Freire C, Castro B, Christensen PA, Hillman AR (1997) Inorg Chem 36:4919. doi:10.1021/ic970467j

    Article  CAS  Google Scholar 

  43. Spek AL (2003) J Appl Cryst 36:7. doi:10.1107/S0021889802022112

    Article  CAS  Google Scholar 

  44. Yamada S (1999) Coord Chem Rev 190–192:537. doi:10.1016/S0010-8545(99)00099-5 and references therein

    Article  Google Scholar 

  45. Fernandez JM, Ruiz-Tamirez OL, Toscano RA, Macias-Ruvalcaba N, Aguilar-Martinez M (2000) Transit Met Chem (Weinh) 25:517. doi:10.1023/A:1007028814788

    Google Scholar 

  46. Castineiras A, Hiller W, Strahle J, Romero J, Bastida R, Sousa A (1990) Acta Crystallogr C46:770

    CAS  Google Scholar 

  47. Cheeseman TP, Hall D, Waters TN (1965) Nature 205:494. doi:10.1038/205494b0

    Article  CAS  Google Scholar 

  48. Orioli PL, Sacconi L (1966) J Am Chem Soc 88:277. doi:10.1021/ja00954a018

    Article  CAS  Google Scholar 

  49. Nozaki H, Takaya H, Moriuti S, Noyori R (1968) Tetrahedron 24:3655. doi:10.1016/S0040-4020(01)91998-2

    Article  CAS  Google Scholar 

  50. Li G-P, Yang Q-C, Tang Y-Q, Guan Y-D, Shang Z-H (1987) Acta Chim Sin 45:421

    CAS  Google Scholar 

  51. Elerman Y, Elmalı A, Özbey S (1998) Acta Crystallogr C54:1072

    CAS  Google Scholar 

  52. Elerman Y, Geselle M (1997) Acta Crystallogr C53:549

    CAS  Google Scholar 

  53. Kani Y, Ohba S, Ishikawa T, Sakamoto M, Nishida Y (1998) Acta Crystallogr C54:191

    CAS  Google Scholar 

  54. Lo JM, Yao HH, Liao FL, Wang SL, Lu TH (1997) Acta Crystallogr C53:848

    CAS  Google Scholar 

  55. Khandar AA, Nejati K (2000) Polyhedron 19:607. doi:10.1016/S0277-5387(99)00380-0

    Article  CAS  Google Scholar 

  56. Kılınçarslan R, Karabıyık H, Ulusoy M, Aygün M, Çetinkaya B, Büyükgüngör O (2006) J Coord Chem 59:1649

    Google Scholar 

  57. Akitsu T, Einaga Y (2005) Polyhedron 24:2933. doi:10.1016/j.poly.2005.06.018

    Article  CAS  Google Scholar 

  58. O’Keeffe M, Brese NE (1991) Acta Crystallogr B47:192

    Google Scholar 

  59. O’Keeffe M, Brese NE (1991) J Am Chem Soc 113:3226. doi:10.1021/ja00009a002

    Article  Google Scholar 

  60. Brown ID, Altermatt D (1985) Acta Crystallogr B41:244

    CAS  Google Scholar 

  61. Srivanavit C, Brown DG (1976) J Am Chem Soc 98:4447. doi:10.1021/ja00431a019

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank The Scientific and Technical Research Council of Turkey (TÜBİTAK) and Dokuz Eylül University Research Fund (respective project numbers: 105T372, 106T364, and 04.KB.FEN.100) for financial support of this work. In addition, financial support from Spanish Ministerio de Educacion y Ciencia (MAT2006-01997 and ‘Factoría de Cristalizacíon’ Consolider Ingenio 2010) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Karabıyık.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulusoy, M., Karabıyık, H., Kılınçarslan, R. et al. Co(II) and Cu(II) Schiff base complexes of bis(N-(4-diethylamino-2-methylphenyl)-3,5-di-tert-butylsalicylaldimine): Electrochemical and X-ray structural study. Struct Chem 19, 749–755 (2008). https://doi.org/10.1007/s11224-008-9358-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-008-9358-z

Keywords

Navigation