Skip to main content
Log in

Features of local inelasticity distribution in D16T aluminum alloy under static tensile conditions

  • Production Section
  • Published:
Strength of Materials Aims and scope

We have assessed the characteristic of local inelasticity distribution, which controls the evolution of microstructural processes in a loaded surface layer of D16T structural aluminum alloy specimen in view of the strain-hardening stages and deformation mechanism changeover. The deformation stages for static tensile conditions are correlated with the characteristic of local inelasticity distribution, in order to determine the relationship between the deformation mechanism changeover and local inelasticity kinetics for the transition point from strain-hardening to strain-softening of the alloy under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. A. Lebedev, O. I. Marusii, N. G. Chausov, and L. V. Zaytseva, “Study of the fracture kinetics of ductile materials at the final stage of deformation,” Strength Mater., 14, No. 1, 13–18 (1982).

    Article  Google Scholar 

  2. Resistance of Materials to Deformation and Fracture [in Russian], Part 1, Naukova Dumka, Kiev (1993).

  3. N. P. Barykin, A. Kh. Valeeva, and I. Sh. Valeev, “Effect of the rheological parameters of the surface layer of structurally inhomogeneous billets on fore and strain characteristics in the case of plastic strain,” Strength Mater., 40, No. 4, 485–490 (2008).

    Article  CAS  Google Scholar 

  4. I. L. Oding and Yu. P. Liberov, “Accumulation of defects and development of microcracks in armco-iron under static tension,” Izv. AN SSSR. Metallurg. Gorn. Delo, No. 1, 113–119 (1964).

  5. A. A. Lebedev, N. G. Chausov, and Yu. L. Evetskii, “Determination of the damage parameters of ductile materials at the stage of softening,” Strength Mater., 21, No. 9, 1137–1140 (1989).

    Article  Google Scholar 

  6. A. A. Lebedev, N. G. Chausov, S. A. Nedoseka, and I. O. Boginich, “Model of damage cumulation in metallic materials under static tension,” Strength Mater., 27, No. 7, 379–386 (1995).

    Article  Google Scholar 

  7. A. A. Lebedev, N. G. Chausov, I. O. Boginich, and S. A. Nedoseka, “Systematic evaluation of the damage to a material during plastic deformation,” Strength Mater., 28, No. 5, 347–352 (1996).

    Article  Google Scholar 

  8. G. S. Pisarenko, A. P. Yakovlev, and V. V. Matveev, Vibration-Absorbing Properties of Structural Materials. Handbook [in Russian], Naukova Dumka, Kiev (1971).

    Google Scholar 

  9. V. T. Troshchenko, Deformation and Fracture of Metals in High-Cycle Loading [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  10. V. T. Troshchenko, Fatigue and Inelasticity of Metals [in Russian], Naukova Dumka, Kiev (1971).

    Google Scholar 

  11. G. G. Pisarenko, A. V. Voinalovich, P. M. Kopchevskii, and A. N. Mailo, “Study of local inelasticity distribution in structural materials tested in a wide range of loading frequencies,” in: Proc. I Int. Conf. on Deformation and Fracture of Materials, Baikov IMET RAN, Moscow (2006), pp. 20–21.

    Google Scholar 

  12. G. G. Pisarenko, A. N. Mailo, and A. V. Voinalovich, “Discrete inelasticity phenomena in fatigue of metals,” in: Proc. II Int. Conf. on Deformation and Fracture of Materials and Nanomaterials, Baikov IMET RAN, Moscow (2007), pp. 38–40.

    Google Scholar 

  13. GOST 1497-84. Metals. Tensile Test Procedures [in Russian], Introduced Nov. 1, 1990.

  14. G. G. Pisarenko, A. V. Voinalovich, Yu. M. Golovanev, and I. M. Vasinuyk, “Damageability and structural inhomogeneity of VT14 titanium alloy under cyclic loading,” Strength Mater., 35, No. 6, 594–600 (2003).

    Article  CAS  Google Scholar 

  15. G. G. Pisarenko, A. V. Voinalovich, Yu. M. Golovanev, and I. M. Vasinuyk, “Regularities of the behavior of stochastic properties of titanium alloys under cyclic loading,” Strength Mater., 33, No. 3, 255–260 (2001).

    Article  CAS  Google Scholar 

  16. N. V. Smirnov and I. V. Dunin-Barkovskii, Probability Theory and Mathematical Statistics Course [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  17. A. A. Lebedev, N. G. Chausov, O. I. Marusii, et al., “Kinetics of rupture of ductile sheet material at the concluding stage of deformation,” Strength Mater., 20, No. 12, 1563–1569 (1988).

    Article  Google Scholar 

  18. V. A. Strizhalo, Yu. V. Dobrovol’skii, V. A. Strel’chenko, et al., Strength and Acoustic Emission of Materials and Structural Materials [in Russian], Naukova Dumka, Kiev (1990).

    Google Scholar 

  19. A. A. Lebedev, N. G. Chausov, O. I. Marusii, et al., “Failure kinetics for sheet austenitic steels in the final stage of deformation,” Strength Mater., 21, No. 3, 285–290 (1989).

    Article  Google Scholar 

  20. V. S. Ivanova and V. F.Terent’ev, Metal Fatigue Nature [in Russian], Metallurgiya, Moscow (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Prochnosti, No. 4, pp. 141–148, July–August, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mailo, A.N. Features of local inelasticity distribution in D16T aluminum alloy under static tensile conditions. Strength Mater 41, 449–454 (2009). https://doi.org/10.1007/s11223-009-9135-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-009-9135-2

Keywords

Navigation