Skip to main content

Advertisement

Log in

Continuous supercritical hydrothermal synthesis: lithium secondary ion battery applications

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Nanosized lithium iron phosphate (LiFePO4) and transition metal oxide (MO, where M is Cu, Ni, Mn, Co, and Fe) particles are synthesized continuously in supercritical water at 25–30 MPa and 400°C under various conditions for active material application in lithium secondary ion batteries. The properties of the nanoparticles, including crystallinity, particle size, surface area, and electrochemical performance, are characterized in detail. The discharge capacity of LiFePO4 was enhanced up to 140 mAh/g using a simple carbon coating method. The LiFePO4 particles prepared using supercritical hydrothermal synthesis (SHS) deliver the reversible and stable capacity at a current density of 0.1 C rate during ten cycles. The initial discharge capacity of the MO is in the range of 800–1,100 mAh/g, values much higher than that of graphite. However, rapid capacity fading is observed after the first few cycles. The continuous SHS can be a promising method to produce nanosized cathode and anode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Armand, J.-M. Tarascon, Nature 451, 652 (2008)

    Article  CAS  Google Scholar 

  2. M.S. Whittingham, Chem. Rev. 104, 4271 (2004)

    Article  CAS  Google Scholar 

  3. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997)

    Article  CAS  Google Scholar 

  4. J.M. Tarascon, M. Armand, Nature 414, 359 (2001)

    Article  CAS  Google Scholar 

  5. K. Kand, Y.S. Meng, J. Breger, C.P. Grey, G. Ceder, Science 311, 977 (2006)

    Article  Google Scholar 

  6. J.W. Fergus, J. Power Sources 195, 939 (2010)

    Article  CAS  Google Scholar 

  7. D. Jugovi′c, D. Uskokovi′c, J. Power Sources 190, 538 (2009)

    Article  Google Scholar 

  8. J.O. Besenhard, J. Yang, M. Winter, J. Power Sources 68, 87 (1997)

    Article  CAS  Google Scholar 

  9. L. Huang, J.-S. Cai, Y. He, F.-S. Ke, S.-G. Sun, Electrochem. Commun. 11, 950 (2009)

    Article  CAS  Google Scholar 

  10. H. Kim, J. Choi, H.-J. Sohn, T. Kang, J. Elecrochem. Soc. 146, 4401 (1999)

    Article  CAS  Google Scholar 

  11. G.-J. Jeong, Y.U. Kim, H.-J. Sohn, T. Kang, J. Power Sources 101, 201 (2001)

    Article  CAS  Google Scholar 

  12. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496 (2000)

    Article  CAS  Google Scholar 

  13. H. Assaaoudi, Z. Fang, I.S. Butler, D.H. Ryan, J.A. Kozinski, Solid State Sci. 9, 385 (2007)

    Article  CAS  Google Scholar 

  14. M. Koltypin, D. Aurbach, L. Nazar, B. Ellis, J. Power Sources 174, 1241 (2007)

    Article  CAS  Google Scholar 

  15. G.X. Wang, Y. Chen, K. Konstantinov, M. Lindsay, H.K. Liu, S.X. Dou, J. Power Sources 109, 142 (2002)

    Article  CAS  Google Scholar 

  16. A. Yamada, S.C. Chung, K. Hinokuma, J. Electrochem. Soc. 148, A224 (2001)

    Article  CAS  Google Scholar 

  17. S. Yang, P.Y. Zavalij, M.S. Whittingham, Electrochem. Commun. 3, 505 (2001)

    Article  CAS  Google Scholar 

  18. S.Q. Wang, J.Y. Zhang, C.H. Chen, Scr. Mater. 57, 337 (2007)

    Article  CAS  Google Scholar 

  19. G. Arnold, J. Garche, R. Hemmer, S. Stro¨bele, C. Vogler, M. Wohlfahrt-Mehrens, J. Power Sources 119–121, 247 (2003)

    Article  Google Scholar 

  20. X. Wang, L. Li, Y.G. Zhang, S.T. Wang, Z.D. Zhang, L.F. Fei, Y.T. Qian, Cryst. Growth Des. 6, 2163 (2006)

    Article  CAS  Google Scholar 

  21. T.-H. Cho, H.-T. Chung, J. Power Sources 133, 272 (2004)

    Article  CAS  Google Scholar 

  22. L.J. Fu, H. Liu, C. Li, Y.P. Wu, E. Rahm, R. Holze, H.Q. Wu, Prog. Mater. Sci. 50, 881 (2005)

    Article  CAS  Google Scholar 

  23. M. Konarova, I. Taniguchi, Mater. Res. Bull. 43, 3305 (2008)

    Article  CAS  Google Scholar 

  24. S.H. Hong, J.S. Bae, H.J. Ahn, Metals Mater. Int. 14, 229 (2008)

    Article  CAS  Google Scholar 

  25. S.W. Oh, H.J. Bang, Y.C. Bae, Y.K. Sun, J. Power Sources 173, 502 (2007)

    Article  CAS  Google Scholar 

  26. T. Adschiri, Y. Hakuta, K. Sue, K. Arai, J. Nanopart. Res. 3, 227 (2001)

    Article  CAS  Google Scholar 

  27. K. Kanamura, A. Goto, R.Y. Ho, T. Umegaki, K. Toyoshima, K.-i. Okada, Y. Hakuta, T. Adschiri, K. Arai, Electrochem. Solid-State Lett. 3, 256 (2000)

    Article  CAS  Google Scholar 

  28. T. Adschiri, K. Kanazawa, K. Arai, J. Am. Ceram. Soc. 75, 1019 (1992)

    Article  CAS  Google Scholar 

  29. T. Adschiri, Y. Hakuta, K. Arai, Ind. Eng. Chem. Res. 39, 4901 (2000)

    Article  CAS  Google Scholar 

  30. A. Aimable, D. Aymes, F. Bernard, F.L. Cras, Solid State Ion. 180, 861 (2009)

    Article  CAS  Google Scholar 

  31. Y.H. Shin, S.-M. Koo, D.S. Kim, Y.-H. Lee, B. Veriansyah, J. Kim, Y.-W. Lee, J. Supercrit. Fluids 50, 250 (2009)

    Article  CAS  Google Scholar 

  32. K. Sue, K. Murata, K. Kimura, K. Arai, Green Chem. 5, 659 (2006)

    Article  Google Scholar 

  33. K. Kanamura, K. Dokko, T. Kaizawa, J. Electrochem. Soc. 152, A391 (2005)

    Article  CAS  Google Scholar 

  34. J.-W. Lee, J.-H. Lee, T.T. Viet, J.-Y. Lee, J.-S. Kim, C.-H. Lee, Electrochim. Acta 55, 3015 (2010)

    Article  CAS  Google Scholar 

  35. J. Lee, A.S. Teja, J. Supercrit. Fluids 35, 83 (2005)

    Article  CAS  Google Scholar 

  36. C. Xu, J. Lee, A.S. Teja, J. Supercrit. Fluids 44, 92 (2008)

    Article  CAS  Google Scholar 

  37. W.-N. Li, J. Yuan, X.-F. Shen, S. Gomez-Mower, L.-P. Xu, S. Sithambaram, M. Aindow, S.L. Suib, Adv. Funct. Mater. 16, 1247 (2006)

    Article  CAS  Google Scholar 

  38. J.-H. Lee, J.-Y. Ham, J. Ind. Eng. Chem. 13, 835 (2007)

    CAS  Google Scholar 

  39. Y. Hao, A.S. Teja, J. Mater. Res. 18, 415 (2003)

    Article  CAS  Google Scholar 

  40. S. Takami, T. Sato, T. Mousavand, S. Ohara, M. Umetsu, T. Adschiri, Mater. Lett. 61, 4769 (2007)

    Article  CAS  Google Scholar 

  41. J. Lee, A.S. Teja, Mater. Lett. 60, 2105 (2006)

    Article  CAS  Google Scholar 

  42. B. Veriansyah, H. Park, J.D. Kim, B.K. Min, Y.H. Shin, Y.W. Lee, J. Kim, J. Supercrit. Fluids 50, 283 (2009)

    Article  CAS  Google Scholar 

  43. Y.-H. Rho, L.F. Nazar, L. Perry, D. Ryan, J. Electrochem. Soc. 154, A283 (2007)

    Article  CAS  Google Scholar 

  44. X. Zhi, G. Liang, L. Wang, X. Ou, J. Zhang, J. Cui, J. Power Sources 189, 779 (2009)

    Article  CAS  Google Scholar 

  45. A. Debart, L. Dupont, P. Poizot, J.B. Leriche, J.M. Tarascon, J. Elecrochem. Soc. 148, A1266 (2001)

    Article  CAS  Google Scholar 

  46. J.Y. Xiang, J.P. Tu, L. Zhang, Y. Zhou, X.L. Wang, S.J. Shi, J. Power Sources 195, 313 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Clean Technology Program through the Korea Evaluation Institute of Industrial Technology funded by the Ministry Knowledge Economy (KC000646). Additional support by Global Research Lab. Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (MEST) (grant number: 2010-00351), is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehoon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, SA., Nugroho, A., Kim, S.J. et al. Continuous supercritical hydrothermal synthesis: lithium secondary ion battery applications. Res Chem Intermed 37, 429–440 (2011). https://doi.org/10.1007/s11164-011-0273-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0273-3

Keywords

Navigation