Skip to main content
Log in

Partial nitrification—operational parameters and microorganisms involved

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Nitrite is a common intermediate in at least three different oxidative or reductive biochemical pathways that occur in nature (nitrification, denitrification and dissimilatory or assimilatory nitrate reduction). Nitrite accumulation or partial nitrification has been reported in literature for decades. In engineered systems, partial nitrification is of interest as it offers cost savings in aeration as well as in the form of lesser need for addition of organic carbon as compared to the conventional denitrification. A broad range of operating parameters and factors has been reviewed in this paper which are essential for achieving partial nitrification. Of these, pH, dissolved oxygen (DO), temperature, free ammonia (FA) and nitrous acid concentrations, inhibitory compounds are important factors in achieving partial nitrification.

Two groups of bacteria, namely ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) are involved in nitrification. Chemolitho-autotrophic AOB are responsible for the rate-limiting step of nitrification in a wide variety of environments, making them important in the global cycling of nitrogen. Characterization and identification of the bacterial populations in an engineered system which have been considered to be a “black box”, has been made possible by using non-cultivation based techniques such as fluorescent in situ hybridization technique (FISH), polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), Sequencing and other techniques involving quantitative chemical analyses of specific biomarkers including quinones. Accordingly, this paper also attempts to give examples of how various molecular techniques can be used for characterizing various microorganisms involved in biological nitrogen removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Anammox:

Anaerobic ammonium oxidation

AMO:

Ammonia Monooxygenase

AOB:

Ammonia-oxidizing bacteria

cDNA:

Complementary deoxyribonucleic acid

Cd:

Cadmium

\({\hbox{ClO}_{2}^{-}}\) :

Chlorite ion

\({\hbox{ClO}_{3}^{-}}\) :

Chlorate ion

COD:

Chemical oxygen demand

Cr:

Chromium

Cu:

Copper

DGGE:

Denaturing gradient gel electrophoresis

DNA:

Deoxyribonucleic acid

DO:

Dissolved oxygen

EPA:

Environmental Protection Agency

FA:

Free ammonia

Fe:

Iron

FISH:

Fluorescence in situ hybridization

FNA:

Free nitrous acid

HAO:

Hydroxylamine oxidoreductase

HNO2 :

Nitrous acid

HRT:

Hydraulic residence time

MCRT:

Mean cell residence time

MK:

Menaquinone

N2 :

Nitrogen gas

NaCl:

Sodium chloride

NaOH:

Sodium hydroxide

NH3 :

Ammonia

\({\hbox{NH}_{4}^{+}}\) :

Ammonium ion

NH2OH:

Hydroxyl amine

NO:

Nitric oxide

N2O:

Nitrous oxide

\({\hbox{NO}_{2}^{-}}\) :

Nitrite ion

\({\hbox{NO}_{3}^{-}}\) :

Nitrate ion

NOB:

Nitrite-oxidizing bacteria

NOD:

Nitrogenous oxygen demand

NOR:

Nitrite oxidoreductase

Pb:

Lead

PCR:

Polymerase chain reaction

Q:

Ubiquinone

RNA:

Ribonucleic acid

rRNA:

Ribosomal ribonucleic acid

RT:

Reverse transcriptase

Sharon:

Single reactor high activity ammonia removal over nitrite

SMBR:

Submerged membrane bioreactor

SRT:

Sludge residence time

TAN:

Total ammoniacal nitrogen

TOC:

Total organic carbon

VAS:

Volatile attached solids

WWTP:

Wastewater treatment plant

References

  • Abeling U, Seyfried CF (1992) Anaerobic-aerobic treatment of high-strength ammonium wastewater nitrogen removal via nitrite. Water Sci Technol 26(5–6):1007–1015

    CAS  Google Scholar 

  • Akkermans ADL, van Elsas JD, de Bruijn FJ (1995) Molecular Microbial Ecology Manual. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Aleem MIH (1970) Oxidation of inorganic nitrogen compounds. Ann Rev Plant Physiol 21:67–90

    CAS  Google Scholar 

  • Alleman JE (1984) Elevated nitrite occurrence in biological wastewater treatment systems. Water Sci Technol 17:409–419

    Google Scholar 

  • Alleman JE, Irvine RL (1980) Nitrification in the sequencing batch biological reactor. J WPCF 52(11):2747–2754

    CAS  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl D (1990) A combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  Google Scholar 

  • Anthonisen AC, Loehr RC, Prakasam TBS, Srinath EG (1976) Inhibition of nitrification by ammonia and nitrous acid. J Wat PollutControl Fed 48(5):835–852

    CAS  Google Scholar 

  • Aoi Y, Miyoshi T, Okamoto T, Tsuneda S, Hirata A, Kitayama A, Gamune T (2000) Microbial ecology of nitrifying bacteria in wastewater treatment process examined by fluorescence in situ hybridization. J Biosc Bioengg 90(3):234–240

    CAS  Google Scholar 

  • Balmelle B, Nguyen KM, Capdeville B, Cornier JC, Deguin A (1992) Study of factors controlling nitrite build-up in biological processes for water nitrification. Water Sci Technol 26(5–6):1017–1025

    CAS  Google Scholar 

  • Belser LW, Mays EL (1980) Specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soils and sediments. Appl Environ Microb 39(3):505–510

    CAS  Google Scholar 

  • Bernet N, Sanchez O, Cesbron D, Steyer JP, Delgenes JP (2005) Modeling and control of nitrite accumulation in a nitrifying biofilm reactor. Biochem Engg J 24:173–183

    CAS  Google Scholar 

  • Biesterfeld S, Figueroa L, Hernandez M, Rusell P (2001) Quantification of nitrifying bacterial populations in a full-scale nitrifying trickling filter using fluorescent in situ hybridization. Water Res 73:329

    CAS  Google Scholar 

  • Blaszczyk M, Przytocka-Jusaik M, Kruszewska U, Mycielski R (1981) Denitrification of high concentrations of nitrites and nitrates in synthetic medium with different sources of organic carbon. Acta microbiol Polonica 30:49–58

    CAS  Google Scholar 

  • Bock E (1965) Vergleichende Untersuchung über die Wirkung sichtbaren Lichtes auf Nitrosomonas europaea und Nitrobacter winogradskyi. Arch Microbiol 51:18–41

    CAS  Google Scholar 

  • Bock E (1976) Growth of Nitrobacter in the presence of organic matter. II. Chemoorganotrophic growth of Nitrobacter agilis. Arch Microbiol 108:305–312

    CAS  Google Scholar 

  • Bock E, Koops HP, Harms H, Ahlers B (1991) The biochemistry of nitrifying organisms. In: Shivley JM (ed) Variations of autotrophic life. Academic Press, London, pp 171–200

    Google Scholar 

  • Bougard D, Bernot N, Cheneby D, Delgenes JP (2006a) Nitrification of a high-strength wastewater in an inverse turbulent bed reactor: effect of temperature on nitrite accumulation. Process Biochem 41:106–113

    CAS  Google Scholar 

  • Bougard D, Bernot N, Dabert P, Delgenes JP, Steyer JP (2006b) Influence of closed loop control on microbial diversity in a nitrification process. Water Sci Technol 53(4–5):85–93

    CAS  Google Scholar 

  • Braune W, Uhlemann R (1968) Studien zum Einfluss der Temperatur auf Ammonifikation und Nitrifikation im Flusswater. Int Revue ges Hydrobiol 53:453–468

    CAS  Google Scholar 

  • Bruns MA, Stephen JR, Kowalchuk GA, Prosser JI, Paul EA (1999) Comparative diversity of ammonia oxidizer 16S rRNA gene sequences in native, tilled, and successional soils. Appl Environ Microbiol 65(7):2994–3000

    CAS  Google Scholar 

  • Burrell PC, Keller J, Blackall LL (1998) Microbiology of a nitrite-oxidizing bioreactor. Appl Environ Microbiol 64:1878–1883

    CAS  Google Scholar 

  • Burrell PC, Phalen CM, Hovanec TA (2001) Identification of bacteria responsible for ammonia oxidation in freshwater aquaria. Appl Environ Microbiol 67:5791–5800

    CAS  Google Scholar 

  • Castignetti D, Gunner HB (1982) Differential tolerance of hydroxylamine by an Alcaligenes sp., a heterotrophic nitrifier, and by Nitrobacter agilis. Can J Microbiol 28:148–150

    CAS  Google Scholar 

  • Ceçen F, Gönenç IE (1995) Criteria for nitrification and denitrification of high-strength wastes in 2 upflow submerged filters. Water Environ Res 67(2):132–142

    Google Scholar 

  • Collins G, Woods A, Sharon McHugh, Carton MW, O’Flaherty V (2003) Microbial community structure and methanogenic activity during start-up of psychrophilic anaerobic digesters treating synthetic industrial wastewaters. FEMS Microb Ecol 46:159–170

    CAS  Google Scholar 

  • Corral AM, Gonzalez F, Campos JL, Mendez CR (2005) Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds. Proc Biochem 40:3109–3118

    Google Scholar 

  • Daims H, Purkhold U, Bjerrum L, Arnold E, Wilderer PA, Wagner M (2001a) Nitrification in sequencing biofilm batch reactors: lessons from molecular approaches. Water Sci Technol 43(3):9–18

    CAS  Google Scholar 

  • Daims H, Nielsen JL, Nielsen PH, Schleifer KH, Wagner M (2001b) In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67:5273–5284

    CAS  Google Scholar 

  • Denac M, Uzman S, Tanaka H, Dunn IJ (1983) Modeling of experiments on biofilm penetration effects in a fluidized bed nitrification reactor. Biotechnol Bioengng 25:1841–1861

    CAS  Google Scholar 

  • Dinçer AR, Kargi F (1999) Salt inhibition of nitrification and denitrification in saline wastewater. Environ Technol 20:1147–1153

    Google Scholar 

  • Dionisi HM, Layton AC, Harms G, Gregory IR, Robinson KG, Sayler GS (2002) Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl Environ Microbiol 68(1):245–253

    CAS  Google Scholar 

  • Eccleston M, Kelly DP (1978) Oxidation kinetics and chemostat growth kinetics of Thiobacillus ferrooxidans on tetrathionate and thiosulfate. J Bacteriol 134:718–727

    CAS  Google Scholar 

  • Egli K, Langer C, Siegrist HR, Zehnder AJB, Wagner M, van der Meer JR (2003) Community analysis of ammonia and nitrite oxidizers during start-up of nitritation reactors. Appl Environ Microbiol 69(6):3213–3222

    CAS  Google Scholar 

  • Ehrich S, Behrens D, Lebedeva E, Ludwig W, Bock E (1995) A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium. Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch Microbiol 164:16–23

    CAS  Google Scholar 

  • Ensign SA, Hyman MR, Arp DJ (1993). In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by Copper. J Bacteriol 175(7):1971–1980

    CAS  Google Scholar 

  • Environmental Protection Agency (1975) Process design manual for nitrogen control. Office of Technology Transfer, Cincinnati, Ohio

    Google Scholar 

  • Fdz-Polanco F, Villaverde S, Garcia PA (1994) Temperature effect on nitrifying bacteria activity in biofilters: activation and free ammonia inhibition. Water Sci Technol 30(11):121–130

    CAS  Google Scholar 

  • Fdz-Polanco F, Villaverde S, Garcia PA (1996) Effects causing nitrite build-up in biofilters. Water Sci Technol 34(3):371–378

    CAS  Google Scholar 

  • Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62(2):340–346

    CAS  Google Scholar 

  • Finstein MS, Delwiche CC (1965) Molybdenum as a micronutrient for Nitrobacter. J Bacteriol 89(1):123–128

    CAS  Google Scholar 

  • Focht DO, Chang A (1975) Nitrification and denitrification processes related to wastewater treatment. Adv Appl Microbiol 19:153–156

    Article  CAS  Google Scholar 

  • Ford DL, Churchwell RL, Kachtick JW (1980) Comprehensive analysis of nitrification of chemical processing wastewater. JWPCF 52(11):2726–2746

    CAS  Google Scholar 

  • Fujie K, Hu HY, Tanaka H, Urano K (1994) Ecological studies of aerobic submerged biofilter on the basis of respiratory quinone profiles. Water Sci Technol 29:373–376

    CAS  Google Scholar 

  • Fujie K, Hu HY, Tanaka H, Urano K, Saito K, Katayama K (1998) Analysis of respiratory quinone profile in soil for characterization of microbiota. Soil Sci Plant Nutr 44(3):393–404

    CAS  Google Scholar 

  • Garrido JM, van Benthum WAJ, van Loosdrecht MCM, Heijnen JJ (1997) Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnol Bioeng 53:168–178

    CAS  Google Scholar 

  • Gelda RK, Effler SW, Brooks CM (1999) Nitrite and the two stages of nitrification in nitrogen polluted Onondaga lake, New York. J Environ Qual 28:1505–1517

    CAS  Google Scholar 

  • Gieseke A, Purkhold U, Wagner M, Amann R, Schramm A (2001) Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl Environ Microbiol 67:1351–1362

    CAS  Google Scholar 

  • Ginestet P, Audic JM, Urbain V, Block JC (1998) Estimation of nitrifying bacterial activities by measuring oxygen uptake in the presence of the metabolic inhibitors allylthiourea and azide. Appl Environ Microbiol 64(6):2266–2268

    CAS  Google Scholar 

  • Glass C, Silverstein J (1998) Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Water Res 32(3):831–839

    CAS  Google Scholar 

  • Goreau TJ, Kaplan WA, Wofsy SC, McElroy MB, Valois FW, Watson SW (1980) Production of NO2 and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl Environ Microbiol 40:526–532

    CAS  Google Scholar 

  • Guerrero MA, Jones RD (1996) Photoinhibition of marine nitrifying bacteria. 1. Wavelength-dependent response. Mar Ecol-Prog Ser 141(1–3):183–192

    Google Scholar 

  • Hao OJ, Chen JM (1994) Factors affecting nitrite buildup in submerged filter system. J Environ Eng-ASCE 120(5):1298–1307

    CAS  Google Scholar 

  • Hanaki K, Wantawin C (1990) Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor. Water Res 24(3):297–302

    CAS  Google Scholar 

  • Harada H, Ando H, Momonoi K (1987) Process analysis of fluidized-bed biofilms reactor for denitrification. Water Sci Technol 19(1–2):151–162

    CAS  Google Scholar 

  • He YJ, Bishop PL. (1994) Effect of acid orange 7 on nitrification process. J Environ Eng–New York 120(1):108–121

    CAS  Google Scholar 

  • Hedrick DB, White DC (1986) Microbial respiratory quinones in the environment. I. A sensitive liquid chromatographic method. Journal for Microbiological Meth 5:243–254

    CAS  Google Scholar 

  • Hellinga C, Schellen AAJC, Mulder, JW, van Loosdrechet, MCM, Heijnen JJ (1998) The SHARON process: an innovative method for nitrogen removal from ammonia-rich wastewater. Water Sci Technol 37:135–142

    CAS  Google Scholar 

  • Hellinga C, van Loosdrecht MCM, Heijnen JJ (1999) Model based design of a novel process for nitrogen removal from concentrated flows. Math Comp Model Dyn Syst 5:351–371

    Google Scholar 

  • Hiraishi A (1988) Respiratory quinone profiles as tools for identifying different bacterial population in activated sludge. J Gen Microbiol 34:39–56

    CAS  Google Scholar 

  • Hockenbury MR, Grady GPL (1977) Inhibition of nitrification – effects of selected organic compounds. JWPCF 49:768–777

    CAS  Google Scholar 

  • Hooper AB (1989) Biochemistry of the nitrifying lithoautotrophic bacteria. In: Schlegel HG, Bowien B, editors. Autotrophic bacteria. Madison, WI: Science Tech:239–65

  • Hooper AB, Terry KR (1983) Specific inhibitors of ammonia oxidation in Nitrosomonas. J Bacteriol 115(2):480–485

    Google Scholar 

  • Horan NJ, Azimi AA (1992) The effects of transient nitrogen loadings on nitrifying activated sludges in completely mixed and plug-flow reactors. Water Res 26(3):279–284

    CAS  Google Scholar 

  • Hovanec TA, Taylor LT, Blakis A, Delong EF (1998) Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria. Appl Environ Microbiol 64:258–264

    CAS  Google Scholar 

  • Hu SS (1990) Acute substrate-intermediate-product related inhibition of nitrifiers. M.S. Thesis, School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA

  • Hu HY, Fujie K, Nakagome H, Urano K, Katayama A (1999) Quantitative analyses of the change in microbial diversity in a bioreactor for wastewater treatment based on respiratory quinones. Water Res 33(15):3263–3270

    CAS  Google Scholar 

  • Hunik JH, Tramper J, Wijffels RH (1994) A strategy to scale up nitrification processes with immobilized cells of Nitrosomonas europaea and Nitrobacter agilis. Bioprocess Eng 11:73–82

    CAS  Google Scholar 

  • Hynes, Russell K, Knowles R (1983) Inhibition of chemoautotrophic nitrification by sodium chlorate and sodium chlorite: a reexamination. Appl Environ Microbiol 45(4):1178–1182

    CAS  Google Scholar 

  • Jayamohan S, Ohgaki S (1988) Effect of DO on kinetics of nitrification. Water Supply 6:141–150

    CAS  Google Scholar 

  • Jenicek P, Svehla P, Zabranska J, Dohanyos M (2004) Factors affecting nitrogen removal by nitritation/denitritation. Water Sci Technol 49(5–6):73–79

    CAS  Google Scholar 

  • Jetten MSM, Logemann S, Muyzer G, Robertson LA, de Vries S, van Loosdrecht MCM, Kuenen JG (1997) Novel principles in the microbial conversion of nitrogen compounds. Ant Leeuw Int JG 71:75–93

    CAS  Google Scholar 

  • Jetten MSM, Strous M, van de Schoonen KT, Schalk J, van Dongen GJM, van de Graaf AA, Logemann S, Muyzer G, van Loosdrecht MCM, Kuenen JG (1999) The anaerobic oxidation of ammonium. FEMS Microbiol Rev 22:421–437

    Google Scholar 

  • Joo SH, Kim DJ, Yoo IK, Park K, Cha GC (2000) Partial nitrification in an upflow biological aerated filter by O2 limitation. Biotechnol Lett 22:937–940

    CAS  Google Scholar 

  • Jooste SHJ, Vanleeuwen J (1993) Induction of nitrite build-up in water by some common disinfectants. Water SA 19(2):107–112

    CAS  Google Scholar 

  • Jones RD, Morita RY (1983). Methane oxidation by Nitrosomonas oceanus and Nitrosomonas europea. Appl Environ Microbiol 45(2):401–410

    CAS  Google Scholar 

  • Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Röser A, Koops HP, Wagner M (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64:3042–3051

    CAS  Google Scholar 

  • Kamath S, Sabatini DA, Canter LW (1991) Biological nitrification/denitrification of high sodium nitrite (navy shipyard) wastewater. Environ Pollut 69(1):25–38

    CAS  Google Scholar 

  • Kaplan D, Wilhelm R, Abeliovich A (2000) Interdependent environmental factors controlling nitrification in waters. Water Sci Technol 42(1–2):167–172

    CAS  Google Scholar 

  • Kim DJ, Kim TK, Choi EJ, Park WC, Kim TH, Ahn DH, Yuan Z, Blackall L, Keller J (2004) Fluorescence in situ hybridization analysis of nitrifiers in piggery wastewater treatment reactors. Water Sci Technol 49(5–6):333–340

    CAS  Google Scholar 

  • Kim DJ, Chang JS, Lee DI, Han DW, Yoo IK, Cha GC (2003) Nitrification of high strength ammonia wastewater and nitrite accumulation characteristics. Water Sci Technol 47(11):45–51

    CAS  Google Scholar 

  • Kim IS, Kim SY, Jang AM (2001) Activity monitoring for nitrifying bacteria by fluorescence in situ hybridization and respirometry. Environ Monit Assess 70(1–2):223–231

    CAS  Google Scholar 

  • Khin Than, Annachhatre AP (2004) Novel microbial nitrogen removal processes. Biotechnol Adv 22:519–532

    CAS  Google Scholar 

  • Knowles G, Downing AL, Barett MJ (1965) Determination of kinetic constants for nitrifying bacteria in mixed culture, with the aid of an electronic computer. J Gen Microbiol 38:263–278

    CAS  Google Scholar 

  • Koops HP, Pommerening-Roser A (2001) Distribution and ecophysiology of the nitrifying bacteria emphasing cultured species. FEMS Microbiol Ecol 37:1–9

    CAS  Google Scholar 

  • Kowalchuk GA, Stephen JR, Boer W, Prosser JI, Embley TM, Woldendorp JW (1997) Analysis of Ammonia- oxidisng baceteria of the β subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol 63(4):1489–1497

    CAS  Google Scholar 

  • Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529

    Google Scholar 

  • Kuai L,Verstraete W (1998) Ammonium removal by the oxygen limited autotrophic nitrification–denitrification system. Appl Environ Microbiol 64:4500–4506

    CAS  Google Scholar 

  • Laanbroek HJ, Gerards S (1993) Competition for limiting amounts of oxygen between Nitrosomonas europaea and Nitrobacter winogradsky grown in mixed continuous cultures. Arch Microbiol 159:453–459

    CAS  Google Scholar 

  • Lane DJ, Pace B, Olson GJ, Stahl A, Sagin ML, Pace NR (1995) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc Natl Acad Sci USA 82:6955–6959

    Google Scholar 

  • Laudelout H, Lambert R, Fripiat JL, Pham ML (1974) Effect de la temperature sur la vitesse d’oxydation de l’ammonium en nitrate par des cultures mextes de nitrifiants. Ann Micrbiol (Inst. Pasteur) 125B:75–84

    Google Scholar 

  • Laudelout H, Lambert R, Pham LM (1976) Influence du pH et de la pression partielle d’oxygene sur la nitrification. Ann Microbiol (Inst. Pasteur) 127A:367–382

    CAS  Google Scholar 

  • Lee YW, Ong SK, Sato C (1997) Effects of heavy metals on nitrifying bacteria. Water Sci Technol 36(12):69–74

    CAS  Google Scholar 

  • Lees H, Simpson JR (1957) The biochemistry of the nitrifying organisms. 5. Nitrite oxidation by Nitrobacter. Biochem J 65:297–305

    CAS  Google Scholar 

  • Leu HG, Lee CD, Ouyang CF, Tseng HT (1998). Effects of organic matter on the conversion rates of nitrogenous compounds in a channel reactor under various flow conditions. Water Res 32(3):891–899

    CAS  Google Scholar 

  • Levenspiel, Octave Chemical Reaction Engineering. Third Edition. John Wiley & Sons, New York. Copyright @1999 John Wiley & Sons, Inc. Pages 27–28

  • Lim BR, Hu HY, Kunihiro T, Goto N, Fujie K, Baba K (April, 2002) Microbial Community Structure in a Biological Nitrification/Denitrification Process of Domestic Wastewater, In: Proceedings of the 3rd World Congress of IWA

  • Lim BR, Ahn KH, Songprasert P, Lee SH, Kim MJ (2004) Microbial community structure in an intermittently aerated submerged membrane bioreactor treating domestic wastewater. Desalination 161:145–153

    CAS  Google Scholar 

  • Limpiyakorn T, Shinohara Y, Kurisu F, Yagi O (2005) Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo. FEMS Microbiol Ecol 54(2):205–217

    CAS  Google Scholar 

  • Logemann S, Schantl J, Bijvank S, van Loosdrecht M, Kuenen JG, Jetten MSM (1998) Molecular microbial diversity in a nitrifying reactor system without sludge retention. FEMS Microbiol Ecol 27:239–249

    CAS  Google Scholar 

  • Manz W, Amann R, Ludwig W, Wagner M,Schleifer KH (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Google Scholar 

  • Mauret M, Paul E, Puech-Costes E, Maurette MT, Baptiste P (1996) Application of experimental research methodology to the study of nitrification in mixed culture. Water Sci Technol 34(1):245–252

    CAS  Google Scholar 

  • Mobarry BK, Wagner M, Urbain V, Rittmann BE, Stahl DA (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microbiol 62:2156–2162

    CAS  Google Scholar 

  • Moter A, Gobel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Meth 41:85–112

    CAS  Google Scholar 

  • Mulder A, Graaf AA, van de Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–184

    CAS  Google Scholar 

  • Mulder JW, van Kempen R (1997) N-removal by Sharon. Water Qual Int 15:30–31

    Google Scholar 

  • Muller EB, Stouthamer AH, van Verseveld HW (1995) A novel method to determine maximal nitrification rates by sewage sludge at a non-inhibitory nitrite concentration applied to determine maximal rates as a function of the nitrogen load. Water Res 29(4):1191–1197

    CAS  Google Scholar 

  • Murray I, Parsons JW, Robinson K (1975) Inter-relationship between nitrogen balance, pH and dissolved oxygen in an oxidation ditch treating farm animal waste. Water Res 9:25–30

    CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Muyzer G, deWaal EC (1994) Determination of the genetic diversity of microbial communities using DGGE analysis of PCR-amplified 16SrRNA. In:Microbial Mats, LJ Stal and PCaumette (eds) NATO ASI Series, G35, pp 207–214

  • Muyzer G, Ramsing NB (1995) Molecular methods to study the organization of microbial communities. Water Sci Technol 32(8):1–9

    CAS  Google Scholar 

  • Neufeld R, Greenfield J, Rieder B (1986) Temperature, cyanide and phenolic nitrification inhibition. Water Res 20(5):633–642

    CAS  Google Scholar 

  • Nozawa M, Hong-Ying H, Fujie K, Tsuchida T, Urano K (1998) Population dynamics of chromate reducing bacteria in a bioreactor system developed for the treatment of chromate wastewater. Water Sci Technol 37(4–5):109–112

    CAS  Google Scholar 

  • Olson RJ (1981) Differential photoinhibition of marine nitrifying bacteria: a possible mechanism for the formation of the primary nitrite maximum. J Mar Res 39:227–238

    CAS  Google Scholar 

  • Otawa K, Asano R, Ohba Y, Sasaki T, Kawamura E, Koyama F, Nakamura S, Nakai Y (2006) Molecular analysis of ammonia-oxidizing bacteria community in intermittent aeration sequencing batch reactors used for animal wastewater treatment. Environ Microbiol bf 0: (0). http://www.blackwell-synergy.com/doi/abs/10.1111/j.1462–2920.2006.01078.x (visited on 25/9/06)

  • Painter HA (1970) A review of literature on inorganic nitrogen metabolism in microorganisms. Water Res 4:393–450

    CAS  Google Scholar 

  • Philips S, Hendrikus JL, Verstraete W (2002) Origin, causes and effects of increased nitrite concentrations in aquatic environments. Rev Environ Sci Biotechnol 1:115–141

    CAS  Google Scholar 

  • Prakasam TBS, Loehr RC (1972) Microbial nitrification and denitrification in concentrated wastes. Water Res 6:859–869

    CAS  Google Scholar 

  • Pollice A, Tandoi V, Lestingi C (2002) Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate. Water Res 36:2541–2546

    CAS  Google Scholar 

  • Pommerening-Röser A, Rath G, Koops HP (1996) Phylogenetic diversity within the genus Nitrosomonas. Syst Appl Microbiol 19:344–351

    Google Scholar 

  • Pereira MA, Roest K, Stams AJM, Mota M, Alves M, Akkermans ADL (2002). Molecular monitoring of microbial diversity in expanded granular sludge bed (EGSB) reactors treating oleic acid. FEMS Microbiol Ecol 41:95–103

    CAS  Google Scholar 

  • Purkhold U, Pommerening-Roser A, Juretschko S, Schmidt MC, Koops HP, Wagner M (2000) Phylogeny of all recognized species of ammonia-oxidisers based on comparative 16SrRNA and AmoA sequence analysis: implications for molecular diversity survey. Appl Environ Microbiol 66:5368–5382

    CAS  Google Scholar 

  • Pynaert K, Windey K, Smets B, de Bo I, Verstraete W, Wyffels S, Boeckx P, van Ceemput (2004) Lab-scale oxygen-limited autotrophic nitrification-denitrification (OLAND): from concept to niche applications EU 5th Framework IcoN symposium Anammox: new sustainable N-removal from wastewater. 21–23 January 2004, Ghert, Belgium

  • Quinlan AV (1980) The thermal sensitivity of nitrification as a function of the concentration of nitrogen substrate. Water Res 14:1501–1507

    CAS  Google Scholar 

  • Randall CW, Buth D (1984) Nitrite build-up in an activated sludge resulting form combined temperature and toxicity effects. JWPCF 56:1045–1049

    CAS  Google Scholar 

  • Rhee SK, Lee JJ, Lee ST (1997) Nitrite accumulation in a sequencing batch reactor during the aerobic phase of biological removal. Biotechnol Lett 19:195–198

    CAS  Google Scholar 

  • Rittmann, BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill, New York, pp 470–474

  • Rolleke S, Muyzer G, Wawer C, Wanner G, Lubitz W (1996) Identification of bacteria in biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 62(6):2059–2065

    CAS  Google Scholar 

  • Rols JL, Mauret M, Rahmani H, Ngyen KM, Capdeville B, Cornier JC, Deguin A (1994) Population dynamics and nitrite build-up in activated sludge and biofilm processes for nitrogen removal. Water Sci Technol 29(7):43–51

    CAS  Google Scholar 

  • Rowan AK, Snape JR, Fearnside D, Barer MR, Curtis TP, Head IM (2003) Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiol Ecol 43:195 (doi:10.1111/j.1574–6941.2003.tb01059.x)

    Google Scholar 

  • Ruiz G, Jeison D, Chamy R (2003) Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res 37: 1371–1377

    CAS  Google Scholar 

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230(4732):1350–1354

    CAS  Google Scholar 

  • Sauter LJ, Alleman JE (1980) A streamlined approach to biological nitrogen removal. Proc Am Soc Cir Engrs Envir Engng Div 296–306

  • Schmidt I, Bock E (1997) Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch Microbiol 167:106–111

    CAS  Google Scholar 

  • Schmidt I, Bock E (1998) Anaerobic ammonia oxidation by cell free extracts of Nitrosomonas eutropha. Antonie van Leeuwenhoek 73:271–278

    CAS  Google Scholar 

  • Schmidt I, Sliekers O, Schmid M, Cirpus I, Strous M, Bock E, Kuenen JG, Jetten MSM (2002) Aerobic and anaerobic ammonia oxidizing bacteria – competitors or natural partners? FEMS Microbiol Ecol 39:175–181

    CAS  Google Scholar 

  • Schmidt I, Sliekers O, Schmid M, Bock E, Fuerst J, Kuenen JG, Jetten MSM, Strous M (2003) New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol Rev 27:481–492

    CAS  Google Scholar 

  • Schramm A, deBeer D, Wagner M, Amann R (1998). Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl Environ Microbiol 64:3480–3485

    CAS  Google Scholar 

  • Sharma B, Ahlert RC (1977) Nitrification and nitrogen removal. Water Res 11:897–925

    CAS  Google Scholar 

  • Sliekers A, Derwort, Kuenen JG, Strous M, Jetten MSM (1998) Completely autotrophic ammonia removal over nitrite in one single reactor. Water Res 14:23–45

    Google Scholar 

  • Sliekers A, Third K, Abma W, Kuenen JG, Jetten MSM (2003) CANON and Anammox in a gaslift reactor. FEMS Lett 218:339–344

    CAS  Google Scholar 

  • Smith RV, Foy RH, Lennox SD, Jordan C, Burns LC, Cooper JE, Stevens RJ (1995) Occurrence of nitrite in the Lough Neagh River System. J Environ Qual 24:952–959

    CAS  Google Scholar 

  • Smith RV, Burns LC, Doyle RM, Lennox SD, Kelso BHL, Foy RH, Stevens RJ (1997) Free ammonia inhibition of nitrification in river sediments leading to nitrite accumulation. J Environ Qual 26:1049–1055

    Article  CAS  Google Scholar 

  • Stenstrom MK, Poduska RA (1980) The Effect of Dissolved Oxygen Concentration on Nitrification. Water Res 14:643

    CAS  Google Scholar 

  • Stüven R, Vollmer M, Bock E (1992) The impact of organic matter on nitric oxide formation by Nitrosomonas europaea. Arch Microbiol 158:439–443

    Google Scholar 

  • Surmacz-Gorska J, Cichon A, Miksch K (1997) Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification. Water Sci Technol 36(10):73–78

    CAS  Google Scholar 

  • Surmacz-Gorska J, Gernaey K, Demuynck C, Vanrolleghem P, Verstraete W (1996) Nitrification monitoring in activated sludge by oxygen uptake rate (OUR) measurements. Water Res 30:1228–1236

    CAS  Google Scholar 

  • Suthersan S, Ganczarczyk JJ (1986) Inhibition of nitrite oxidation during nitrification, some observations. Water Pollut Res J Can 21(2):257–266

    CAS  Google Scholar 

  • Suzuki I, Dular U, Kwork SC (1974) Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europea cells and extracts. J Bacteriol 120:556–558

    CAS  Google Scholar 

  • Tanaka H, Dunn IJ (1982) Kinetics of biofilm nitrification. Biotechnol Bioeng 24:669–689

    CAS  Google Scholar 

  • Tanaka H, Uzman S, Dunn IJ (1981) Kinetics of nitrification using a fluidized sand bed reactor with attached growth. Biotechnol. Bioeng 23:1683–1702

    CAS  Google Scholar 

  • Tang NH, Blum DJW, Nirmalakhandan N, Speece RE (1992) QSAR parameters for toxicity of organic chemicals to Nitrobacter. J Environ Eng–ASCE 118(1):17–37

    CAS  Google Scholar 

  • Teske A, Sigalevich P, Cohen Y, Muyzer G (1996) Molecular identification of bacteria from a co-culture by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments as a tool for isolation in pure cultures. Appl Environ Microbiol 62(11):4210–4215

    CAS  Google Scholar 

  • Third KA, Sliekers AO, Kuenen JG, Jetten MSM (2001) The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria. System Appl Microbiol 24:588–596

    CAS  Google Scholar 

  • Tokutomi T (2004) Operation of a nitrite-type airlift reactor at low DO concentration. Water Sci Technol 49(5–6):81–88

    CAS  Google Scholar 

  • Tomlinson TG, Boon AG, Trotman CAN (1966). Inhibition of nitrification in the activated sludge process of sewage disposal. J Appl Bacteriol 29:266–291

    CAS  Google Scholar 

  • Tonkovic Z (1998) Nitrite accumulation at the Mornington sewage treatment plant – causes and significance. 19th Biennial International Conference, Water Quality International 1998. IAWQ, Vancouver, Canada, 21–26 June. pp 165–172

  • Turk O, Mavinic DS (1986) Preliminary assessment of a shortcut in nitrogen removal from wastewater. Can J Civil Eng 13:600–605

    Google Scholar 

  • Turk O, Mavinic DS (1989) Stability of nitrite build-up in an activated sludge system. JWPCF 61:1440–1448

    CAS  Google Scholar 

  • Umbreit WW, Burris RH, Stauffer JF (1957) Manometric techniques Ch. 2. Burgess Publishing Company, Minneapolis, Minnesota

    Google Scholar 

  • van Dongen, Jetten MSM, van Loosdrecht MCM (2001) The SHARON-Anammox process for treatment of ammonium rich wastewater. Water Sci Technol 44:153–160

    Google Scholar 

  • van Kempen R, Mulder JW, Uljterlinde CA, Loosdrecht MCM (2001) Overview:full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering. Water Sci Tech 44(1):145–152

    Google Scholar 

  • van Loosdrecht MCM, Jetten MSM (1998) Microbiological conversions in nitrogen removal. Water Sci Tech 38:1–7

    Google Scholar 

  • Vanzella A, Guerrero MA, Jones RD (1989) Effects of CO and light on ammonium and nitrite oxidation by chemolitotrophic bacteria. Mar Ecol–Prog Ser 57:69–76

    CAS  Google Scholar 

  • Veers G, Gibbs RA, Scherer SE, Caskey CT (1987) The molecular basis of the sparse fur mouse mutation. Science 237:415–417

    Google Scholar 

  • Verstraete W, Philips S (1998) Nitrification–denitrification processes and technologies in new context. Environ Pollut 102:717–726

    CAS  Google Scholar 

  • Villaverde S, Garcia-encina PA, Fdz-Polanco F (1997). Influence of pH over nitrifying biofilms activity in submerged biofilters. Water Res 31(5):1180–1186

    CAS  Google Scholar 

  • Villaverde S, Fdz-Polanco F, Garcia PA (2000) Nitrifying biofilms acclimation to free ammonia in submerged biofilters. Start-up influence. Water Res 34(2):602–610

    CAS  Google Scholar 

  • Votes JP, Wanstaen H, Verstraete W (1975). Removal of nitrogen from highly nitrogenous wastewater. J Water Pollut Control Fed 47:394–398

    Google Scholar 

  • Voytek MA, Ward BB (1995) Detection of ammonium-oxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR. Appl Environ Microbiol 61 (4):1444–1450

    CAS  Google Scholar 

  • Wagner M, Rath G, Amann R, Koops HP, Schleifer KH (1995). In situ identification of ammonia-oxidizing bacteria. Syst Appl Microbiol 18:251–264

    CAS  Google Scholar 

  • Wagner M, Rath G, Koops HP, Flood J, Amann R (1996). In situ analysis of nitrifying bacteria in sewage treatment plants. Water Sci Technol 34:237–244

    CAS  Google Scholar 

  • Wagner M, Loy A (2002). Bacterial community composition and function in sewage treatment system. Environ Biotechnol 13:218–227

    CAS  Google Scholar 

  • Wallace W, Nicholas DJO (1969) The biochemistry of nitrifying microorganisms. Biol Rev 44:359–391

    CAS  Google Scholar 

  • Wang W (1984) Time response of Nitrobacter to toxicity. Environ Int 10:21–26

    CAS  Google Scholar 

  • Weismann U (1994) Biological nitrogen removal from wastewater. In: Fiechter A (ed) Advances in biochemical engineering/biotechnology 51:113–154

  • Wild HE, Sawyer CN, McMahon TC (1971) Factors affecting nitrification kinetics. J WPCF 43:1845–1854

    CAS  Google Scholar 

  • Wong-Chong GM, Loehr RC (1975) Kinetics of microbial nitrification. Water Res 9(12):1099–1106

    CAS  Google Scholar 

  • Wong-Chong GM, Loehr RC (1978) Kinetics of microbial nitrification – nitrite nitrogen oxidation. Water Res 12(8):605–609

    CAS  Google Scholar 

  • Wood PM (1986) Nitrification as a bacterial energy source. In: Prosser JL (ed) Nitrification. IRL Press, Oxford, pp 39–62

    Google Scholar 

  • Wortman B, Wheaton F (1991) Temperature effects on biodrum nitrification. Aquacult Eng 10:183–205

    Google Scholar 

  • Yang L, Alleman JE (1992) Investigation of batchwise nitrite build-up by an enriched nitrification culture. Water Sci Technol 26(5–6):997–1005

    CAS  Google Scholar 

Download references

Acknowledgements

This review was carried out as part of the “Wastewater Treatment and Management” project component of the Asian Regional Research Programme on Environmental Technology (ARRPET) of the Asian Institute of Technology, Thailand funded by the Swedish International Development Cooperation Agency (Sida).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Annachhatre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, B., Annachhatre, A.P. Partial nitrification—operational parameters and microorganisms involved. Rev Environ Sci Biotechnol 6, 285–313 (2007). https://doi.org/10.1007/s11157-006-9116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-006-9116-x

Keywords

Navigation