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Abstract

We determine the variance-optimal hedge for a subset of affine processes includ-
ing a number of popular stochastic volatility models. This framework does not re-
quire the asset to be a martingale. We obtain semiexplicit formulas for the optimal
hedging strategy and the minimal hedging error by applying general structural results
and Laplace transform techniques. The approach is illustrated numerically for a Lévy-
driven stochastic volatility model with jumps as in Carr et al. (2003).
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1 Introduction

A classical problem in Mathematical Finance is how to hedge the risk from selling a contin-
gent claim. Since perfect hedging strategies do not exist in incomplete markets, we focus on
variance-optimal hedging strategies in this paper. This concept has been studied intensively
in the literature (cf. [28, 26] for an overview). The idea is to choose an initial endowment
w∗ and a self-financing strategy ϑ∗ such that the expected squared hedging error

R(w, ϑ) := E

((
w +

∫ T

0

ϑ(t)dS(t)−H
)2
)

is minimized over all such endowments w and strategies ϑ. Here, S denotes the discounted
price process of a stock, T the time horizon, and H the discounted payoff of the option
that is to be hedged. The minimal hedging error R(w∗, ϑ∗) quantifies the residual risk that
cannot be avoided. It may enter the premium that the issuer charges the buyer.
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We consider the above problem for European-style options in stochastic volatility mod-
els of affine structure. This class generalizes Lévy processes and includes e.g. the Heston
[15] model. Another example is the stochastic volatility model of Barndorff-Nielsen and
Shephard [1, henceforth BNS], which is of the form S = exp(z) with

dz(t) = µv(t−)dt+
√
v(t−)dW (t),

dv(t) = −λv(t−)dt+ dr(t). (1.1)

Here, µ, λ denote constants, W a Wiener process and r a subordinator, i.e. an increasing
Lévy process. A generalization of Carr et al. [2] allows for jumps in the stock price as well.

This paper rests on several pillars. One main ingredient is a general characterization
of the variance-optimal hedge in [4]. Moreover, results of [9, 10] on affine processes are
used on the way to concrete solutions. These cannot be expressed in closed form. But
using the integral transform approach of [16] or similarly [3], we can derive semiexplicit
representations which allow for straightforward numerical implementation. The problem
has been attacked in [5] for the Heston model and in [25, 22, 21] for the case that the
discounted stock is a martingale. A different approach is taken in [14] and [7], which rely
on partial differential equation and partly simulation methods.

The structure of the paper is as follows. We start by introducing the general affine setup
and the mean-variance hedging problem. Section 3 contains the solution in integral form. It
is applied to the time-changed Lévy process model of [2] in the subsequent section. The final
Section 5 provides numerical illustration. The appendix contains proofs and some results
on the calculus of semimartingale characteristics, which constitutes the main technical tool
of this paper.

Unexplained notation is used as in [17, 4]. Mathematical formalism is treated liberally
in this study. E.g. we do not state and verify technical conditions concerning interchang-
ing the order of integration in Fubinis theorem, uniform integrability of local martingales,
admissibility of trading strategies, existence of analytic extensions of complex functions
etc. Arguments and conditions of this type have been worked out in related setups by
[16, 25, 22, 21, 13].

2 General setup

We generally work on a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ) with fixed time
horizon T ∈ R+. The initial σ-field F0 is assumed to be trivial. The discounted stock price
S is supposed to be of the form

S(t) = ez(t),

where the return process z is a component of a bivariate affine semimartingaleX = (v, z) in
a sense made precise below. The second component v plays the role of stochastic volatility
or, more accurately, stochastic activity in the model.
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The key tool in this paper is the concept of semimartingale characteristics (cf. [17, 19]
for details). We call a predictable triplet (b, c, F ) local or differential characteristics of an
Rd-valued special semimartingale X if the triplet (B,C, ν) defined via

B(t) :=

∫ t

0

b(s)ds,

C(t) :=

∫ t

0

c(s)ds,

ν([0, t]× A) :=

∫ t

0

F (s, A)ds for t ∈ [0, T ], A ∈ Bd

constitute semimartingale characteristics in the sense of [17] for h(x) := x. This in turn
means that X − B is a local martingale, C = 〈Xc, Xc〉 is the matrix-valued quadratic
variation process of the continuous martingale part of X , and ν is the compensator of the
random measure of jumps of X . On an intuitive level, b stands for the local drift rate of X ,
c for the local covariance matrix of the continuous part, and F for the local Lévy measure
of jumps. For a Lévy process the triplet (b, c, F ) is deterministic and constant. It coincides
with the Lévy-Khintchine triplet of X . For Itô processes

dX(t) = µ(t)dt+ σ(t)dW (t)

we have b(t) = µ(t), c(t) = σ(t)2 and F = 0. Some rules on the calculus of local charac-
teristics are summarized in the appendix.

Recall that z = log(S) denotes the return process and v some kind of activity process
that needs to be specified further. From now on we assume that X = (v, z) is an R+ × R-
valued special semimartingale having local characteristics (b, c, F ) of the form

b(t) = β0(t) + v(t−)β1(t), (2.1)

c(t) = γ0(t) + v(t−)γ1(t), (2.2)

F (t, dx) = ϕ0(t, dx) + v(t−)ϕ1(t, dx) (2.3)

with deterministic Lévy-Khintchine triplets (β0, γ0, ϕ0), (β1, γ1, ϕ1) which are continuous
in t in the sense of [10]. (2.1–2.3) imply that X is a (time-inhomogeneous) affine Markov
process in the sense of [10]. We will mostly focus on the time-homogeneous case where
(β0, γ0, ϕ0), (β1, γ1, ϕ1) do not depend on t. Time-homogeneous affine processes are dis-
cussed in [9].

Our results below are expressed in terms of the Lévy exponents

ψXi (t, u) := u>βi(t) +
1

2
u>γi(t)u+

∫ (
eu
>x − 1− u>x

)
ϕi(t, dx)

for i = 0, 1, t ∈ [0, T ], and u ∈ C2 such that the integral exists, i.e. for

(t, u) ∈ Di :=

{
(t̃, ũ) ∈ [0, T ]× C2 :

∫
|x|≥1

eRe(ũ)>xϕi(t̃, dx) <∞
}
.
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We call

ψX(t, u) := ψX0 (t, u) + v(t−)ψX1 (t, u)

Lévy exponent of X , which is random due to the presence of v(t−). If X is time-homoge-
neous, the argument t in ψX0 , ψ

X
1 etc. will be omitted.

The solution to the quadratic hedging problem will be expressed in terms of

κi(t, x, y1, y2, ŷ1, ŷ2) := ψXi (t, x+ y1 + y2, ŷ1 + ŷ2)− ψXi (t, x+ y1, ŷ1)

− ψXi (t, x+ y2, ŷ2) + ψXi (t, x, 0),

for i = 0, 1 and t ∈ [0, T ] and x, y1, y2, ŷ1, ŷ2 ∈ C such that the Lévy exponents exist.

Example 2.1 The BNS model (1.1) is time-homogeneous. The associated Lévy-Khintchine
triplets (βi, γi, ϕi), i = 0, 1, are given by

β0 =

(
br

0

)
, γ0 = 0, ϕ0(A) =

∫
1A(x, 0)F r(dx) ∀A ∈ B2,

(β1, γ1, ϕ1) =

((
−λ
µ

)
,

(
0 0

0 1

)
, 0

)
,

where (br, 0, F r) denotes the Lévy-Khintchine triplet of r, cf. [19, Section 4.3]. The corre-
sponding Lévy exponents are

ψX0 (u1, u2) = bru1 +

∫
(eu1x − 1− u1x)F r(dx),

ψX1 (u1, u2) = −λu1 + µu2 +
1

2
u2

2.

In order to solve the hedging problem for S, we need the following additional assump-
tions:

1. ψX0 (t, 0, u2) = 0 for any (t, u2) ∈ [0, T ]× iR. This condition means that the local dy-
namics of z depend in a linear (rather than an affine) fashion on v(t−). This restriction
is imposed to obtain semiexplicit solutions in the case where S is not a martingale. It
is not needed if S is a martingale, cf. [22, 21].

2. S is a locally square-integrable semimartingale (cf. [4, Definition A.1]), which is
needed for quadratic hedging to make sense. This condition holds if [0, T ]× [0, ε)×
(−ε, 2 + ε) ⊂ D0 ∩D1 for some ε > 0.

3. ψX1 (t, 0, 2) 6= 2ψX1 (t, 0, 1) for any t ∈ [0, T ]. This condition essentially rules out
constant stock price processes.

4. There exists some equivalent local martingale measureQ ∼ P for S such that we have
E
(
dQ
dP

)2
< ∞. This can be interpreted as a kind of no-arbitrage condition needed in

the framework of quadratic hedging.
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5. We assume ϕ1(t,R × {x}) = 0 for any t ∈ [0, T ], x ∈ R. This condition means
roughly speaking that the jumps of z have a diffuse law. It holds immediately if the
involved Lévy measures has a Lebesgue density.

We turn now to the European-style option that is to be hedged. Its payoff is denoted as

H = f(log(S(T ))) = f(z(T ))

with some function f : R→ R of the form

f(s) =
1

2πi

∫ R+i∞

R−i∞
espf̂(p)dp,

where R ∈ R and f̂ : R + iR → C denotes another function. For the European call with
strike K we have f(s) = (es −K)+ and

f̂(p) =
K1−p

p(p− 1)
(2.4)

for arbitrary R > 1, cf. [16]. For the put we have f(s) = (K − es)+ and the same f̂ as in
(2.4) but with R < 0. The integral representation of further payoff functions can be found
in [16]. f̂ is generally obtained as bilateral Laplace transform of f .

As noted in the introduction, the goal is to minimize the expected squared hedging error

R(w, ϑ) := E

((
w +

∫ T

0

ϑ(t)dS(t)−H
)2
)

(2.5)

over all w ∈ R and all admissible trading strategies ϑ. For the proper notion of admissibility
in the context of quadratic hedging we refer to [4, Definition 2.2]. It means essentially that
the gains of ϑ can be approximated in an L2-sense by the gains of a sequence of simple, i.e.
bounded and piecewise constant strategies.

3 Main results

In this section we solve the hedging problem (2.5) in the affine setup of the previous section.
The approach relies on the general structural results of [4]. A two-step procedure is applied
in order to solve the problem. First, the auxiliary problem of optimal investment under
quadratic utility is solved. Its solution enters the hedging problem in the second step.

3.1 Pure investment problem

The pure investment problem in [4] involves an opportunity process L, an adjustment pro-
cess a, and an opportunity-neutral measure P ?. The process L satisfies

L(t) = inf
ϑ
E

((
1−

∫ T

t

ϑ(s)dS(s)

)2
∣∣∣∣∣Ft

)
, (3.1)
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i.e. it stands for the maximal quadratic utility between t and T of an investor with negative
quadratic utility function. The adjustment process is related to the optimizer ϑ(t) in (3.1).
Specifically, we have

ϑ(t)(s) =

(
1−

∫ s−

t

ϑ(t)(r)dS(r)

)
a(s)

for s ∈ [t, T ]. In particular, the strategy ϑ(0)(t) = a(t)E (−
∫ ·

0
a(s)dS(s))(t−) minimizes

E

((
1−

∫ T

0

ϑ(t)dS(t)

)2
)
.

Hence it is directly related to dynamic portfolio optimization in a Markowitz sense. The
opportunity-neutral measure is harder to motivate. It helps to simplify the structure of the
hedging problem if S fails to be a martingale. The solution to the pure investment problem
in our present setup reads as follows.

Theorem 3.1 Set

ā(t, x) :=
ψX1 (t, x, 1)− ψX1 (t, x, 0)

κ1(t, x, 0, 0, 1, 1)
,

ᾱ(t, x) := ā(t, x)(ψX1 (t, x, 1)− ψX1 (t, x, 0)).

Let α1 : [0, T ]→ R be the solution to the terminal value problem

α′1(t) = −ψX1 (t, α1(t), 0) + ᾱ(t, α1(t)), α1(T ) = 0 (3.2)

and set

α0(t) :=

∫ T

t

ψX0 (s, α1(s), 0)ds. (3.3)

Then the opportunity process L and the adjustment process a in the sense of [4] satisfy

L(t) = exp(α0(t) + α1(t)v(t)), (3.4)

a(t) =
ā(t, α1(t))

S(t−)
. (3.5)

PROOF. In the appendix. �

The opportunity process L allows for a multiplicative decomposition L = L(0)ZA with
a martingale Z and a predictable process of finite variation A satisfying Z(0) = A(0) = 1.
The martingale ZP ? := Z can be used as density process of some probability measure
P ? ∼ P . This so-called opportunity-neutral measure plays a crucial role for determining
the variance-optimal hedge. According to [4], we have A = exp(

∫ t
0
bL (L)(s)ds), where

bL (L) denotes the drift part in the local characteristics of the stochastic logarithm L (L) :=∫ ·
0

1
L(t−)

dL(t).
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3.2 Variance-optimal hedging

We turn now to the hedging problem introduced at the end of Section 2. According to [4], a
first step consists in determining the mean value process V of the option defined as

V (t) := EP ?
(
HE

(
N? − (N?)t

)
(T )
∣∣Ft

)
, (3.6)

where N? denotes the P ?-martingale part of the special semimartingale −
∫ ·

0
a(t)dS(t) and

(N∗)t the process N? stopped at t. In particular, the optimal endowment w∗ in (2.5) is given
by V (0), cf. [4, Theorem 4.10].

Theorem 3.2 (Mean value process) For fixed p ∈ R + iR let Φ1(·, p) : [0, T ]→ C denote
the solution to the terminal value problem Φ1(T, p) = 0,

∂1Φ1(t, p) = −ψX1 (t,Φ1(t, p) + α1(t), p) + ψX1 (t, α1(t), 0)

+ ā(t, α1(t))κ1(t, α1(t),Φ1(t, p), 0, p, 1). (3.7)

Moreover, set

Φ0(t, p) :=

∫ T

t

(
ψX0 (s,Φ1(s, p) + α1(s), 0)− ψX0 (s, α1(s), 0)

)
ds (3.8)

and

Vp(t) := S(t)p exp(Φ0(t, p) + Φ1(t, p)v(t)) (3.9)

for t ∈ [0, T ], p ∈ R + iR. Then the mean value process V from (3.6) satisfies

V (t) =
1

2πi

∫ R+i∞

R−i∞
Vp(t)f̂(p)dp. (3.10)

PROOF. In the appendix. �

In some concrete models as in Section 4, the ordinary differential equation (3.7) and the
integral (3.8) can be calculated in closed form. In this case the mean value process (3.10) is
obtained by a single numerical integration.

The next step on our way is to determine the optimal hedging strategy ϑ∗ in (2.5). Ac-
cording to [4, Theorem 4.10] it is specified by its feedback form

ϑ∗(t) = ξ(t)−
(
V (0) +

∫ t−

0

ϑ∗(s)dS(s)− V (t−)

)
a(t),

where ξ denotes the so-called pure hedge coefficient, which solves

〈S, V 〉P ?(t) =

∫ t

0

ξ(s)d〈S, S〉P ?(s). (3.11)

It is yet to be determined, whereas V and a are already computed in (3.10) and (3.5).
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Theorem 3.3 (Hedging strategy) The pure hedge coefficient is of the form

ξ(t) =
1

2πi

∫ R+i∞

R−i∞
ξp(t)f̂(p)dp,

where

ξp(t) :=
Vp(t−)

S(t−)

κ1(t, α1(t),Φ1(t, p), 0, p, 1)

κ1(t, α1(t), 0, 0, 1, 1)
.

PROOF. In the appendix. �

Finally, we can use the results of [4] in order to determine the minimal hedging error in
(2.5). According to [4, Theorem 4.12] it satisfies

R(w∗, ϑ∗) = E

(∫ T

0

L(t)d

〈
V −

∫ ·
0

ξ(s)dS(s), V −
∫ ·

0

ξ(s)dS(s)

〉P ?
(t)

)
.

Its integral representation in the present setup reads as follows.

Theorem 3.4 (Hedging error) For fixed p, q ∈ C, t ∈ [0, T ] let Υ1(·, q, p, t) → C denote
the solution to the terminal value problem

∂1Υ1(s, q, p, t) = −ψX1 (s,Υ1(s, q, p, t), p), Υ1(t, q, p, t) = q.

Moreover, set

Υ0(s, q, p, t) :=

∫ t

s

ψX0 (r,Υ1(r, q, p, t), p)dr

for 0 ≤ s ≤ t ≤ T . For t ∈ [0, T ], p1, p2 ∈ R + iR define

%(t, p1, p2) := S(0)p exp(Φ̂0 + Υ0(0, Φ̂1, p, t) + Υ1(0, Φ̂1, p, t)v(0))×

×
(
%0 + %1

(
∂2Υ0(0, Φ̂1, p, t) + ∂2Υ1(0, Φ̂1, p, t)v(0)

))
(3.12)

with

p := p1 + p2,

Φ̂i := Φ̂i(t, p1, p2) := αi(t) + Φi(t, p1) + Φi(t, p2), i = 0, 1,

%0 := %0(t, p1, p2) := κ0(t, α1(t),Φ1(t, p1),Φ1(t, p2), p1, p2),

%1 := %1(t, p1, p2) := κ1(t, α1(t),Φ1(t, p1),Φ1(t, p2), p1, p2)

− κ1(t, α1(t),Φ1(t, p1), 0, p1, 1)κ1(t, α1(t),Φ1(t, p2), 0, p2, 1)

κ1(t, α1(t), 0, 0, 1, 1)
.

Then the minimal expected squared hedging error satisfies

R(w∗, ϑ∗) = − 1

4π2

∫ T

0

∫ R+i∞

R−i∞

∫ R+i∞

R−i∞
%(t, p1, p2)f̂(p1)f̂(p2)dp1dp2dt.
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PROOF. In the appendix. �

Remark 3.5 As special cases of Theorems 3.2–3.4 we recover results from the literature.
If X is time-homogeneous and ψj(u, 0) = 0 for j = 0, 1, u ∈ iR, the stock price follows
an exponential Lévy process. The results of Theorems 3.2–3.4 correspond to Theorems 3.1,
3.2 in [16]. If, instead, we suppose that X is time-homogeneous and ψ1(0, 1) = 0, then S is
a martingale and Theorems 3.2–3.4 correspond to [22, Theorems 4.1, 4.2].

4 Time-changed Lévy processes

We apply the general results from Section 3 to a class of stochastic volatility models con-
sidered in [2]. In this framework the return process z is modelled by a time-changed Lévy
process. Choosing an integrated Ornstein-Uhlenbeck (OU) process as time change leads to
the following model for z and the activity process v:

z(t) = z(0) + `(v̂(t)), (4.1)

dv̂(t) = v(t−)dt, (4.2)

dv(t) = −λv(t−)dt+ dr(t) (4.3)

with λ > 0 and independent Lévy processes r, ` such that r is increasing. Their Lévy-
Khintchine triplets and Lévy exponents are denoted by (br, cr, F r), ψr and (b`, c`, F `), ψ`,
respectively. If ` is chosen as Brownian motion with drift, one obtains the dynamics of
the BNS model (1.1). It is shown in [19] that X = (v, z) is an affine process with triplets
(βi, γi, ϕi), i = 0, 1 of the form

β0 =

(
br

0

)
, γ0 = 0, ϕ0(A) =

∫
1A(x, 0)F r(dx) ∀A ∈ B2,

β1 =

(
−λ
b`

)
, γ1 =

(
0 0

0 c`

)
, ϕ1(A) =

∫
1A(0, x)F `(dx) ∀A ∈ B2.

The corresponding Lévy exponents are

ψX0 (u1, u2) = ψr(u1),

ψX1 (u1, u2) = −λu1 + ψ`(u2).

Applying the results from the previous section we obtain the solution to the quadratic hedg-
ing problem.

Proposition 4.1 For the present setup (4.1–4.3) the functions in Theorems 3.1–3.4 read as
follows.

Υ0(s, q, p, t) =

∫ t

s

ψr(Υ1(s̃, q, p, t))ds̃, (4.4)
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Υ1(s, q, p, t) = qeλ(s−t) − ψ`(p)

λ

(
eλ(s−t) − 1

)
,

∂2Υ1(s, q, p, t) = eλ(s−t),

Φ0(t, p) =

∫ T

t

(
ψr(Φ1(s, p) + α1(s))− ψr(α1(s))

)
ds, (4.5)

Φ1(t, p) =
āκ̄1(p, 1)− ψ`(p)

λ

(
eλ(t−T ) − 1

)
,

α0(t) =

∫ T

t

ψr(α1(s))ds, (4.6)

α1(t) =
ᾱ

λ

(
eλ(t−T ) − 1

)
,

%0 = κ̄0(α1(t),Φ1(t, p1),Φ1(t, p2)),

%1 = κ̄1(p1, p2)− κ̄1(p1, 1)κ̄1(p2, 1)

κ̄1(1, 1)
,

ᾱ = āψ`(1),

ā =
ψ`(1)

κ̄1(1, 1)
,

κ1(t, x, y1, y2, ŷ1, ŷ2) = κ̄1(ŷ1, ŷ2),

κ̄1(ŷ1, ŷ2) := ψ`(ŷ1 + ŷ2)− ψ`(ŷ1)− ψ`(ŷ2),

κ0(t, x, y1, y2, ŷ1, ŷ2) = κ̄0(x, y1, y2),

κ̄0(x, y1, y2) := ψr(x+ y1 + y2)− ψr(x+ y1)− ψr(x+ y2) + ψr(x).

PROOF. One easily verifies that the candidates for α1,Φ1,Υ1 satisfy the corresponding ter-
minal value problems. Moreover, the candidates for α0,Φ0,Υ0 have the proper derivative.

�

In some cases the integrals in (4.4–4.6) and the derivative ∂2Υ0 in (3.12) can be ex-
pressed in closed form.

Example 4.2 (Carr et al. [2] model with Γ-OU subordinator) Suppose that the Lévy
exponent of r equals ψr(u) = λζu

η−u with constants ζ, η > 0. In this case the Ornstein-
Uhlenbeck type process v has a stationary gamma law, cf. [6, Example 15.1]. Note that the
integrals in (4.4–4.6) are all of the form

G(q) :=

∫ t2

t1

ψr(g(t, q))dt

with g(t, q) = w(exp(λ(t− t̃))− 1) + q exp(λ(t− t̃)) for some constants w ∈ C, t1, t2, t̃ ∈
[0, T ] with t1 ≤ t2. One easily verifies that this integral has the closed-form representation

G(q) =


−ζ
η+w

(
λ(t2 − t1)w − η log

(
g(t1,q)−η
g(t2,q)−η

))
if η + w 6= 0,

ζ
(
λ(t1 − t2) + η

η−q

(
e−λ(t1−t̃) − e−λ(t2−t̃)

))
if η + w = 0.
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Here, log denotes the distinguished logarithm in the sense of [27], i.e. the branch is chosen
such that the resulting function is continuous in t. The derivative of G is needed for ∂2Υ0 in
(3.12) and it satisfies

G′(q) =


ζη
η+w

(
eλ(t1−t̃)

g(t1,q)−η −
eλ(t2−t̃)

g(t2,q)−η

)
if η + w 6= 0,

ζη
(η−q)2

(
e−λ(t1−t̃) − e−λ(t2−t̃)

)
if η + w = 0.

Remark 4.3 From Proposition 4.1 one can deduce that some expressions can be simplified
in the BNS model (1.1), namely

ξp(t) =
pVp(t−)

S(t)
,

%1 = 0,

cf. also [7, Section 4]. This structure for ξp is obtained for any model in our affine setup
such that the asset price process S is continuous and the local independence condition

ψXj (t, u1, u2) = ψXj (t, u1, 0) + ψXj (t, 0, u2), j = 0, 1

is satisfied (e.g. the Heston [15] model with independent Brownian motions). By (3.9, 3.10),
Vp(t) and hence V (t) are deterministic functions of asset price and volatility. If we differ-
entiate this function with respect to the asset price, we obtain ξp(t) resp. ξ(t). Therefore the
pure hedge ξ can be viewed as a delta hedge if V is interpreted as price process of the claim.
Local independence implies that volatility risk cannot be hedged by trading in the stock.

Barndorff-Nielsen and Shephard [1] consider also superpositions of Lévy-driven Orn-
stein-Uhlenbeck processes. This extension can be treated along the same lines as in the
present paper if v is replaced by a multivariate process. For ease of notation we do not
consider this generalization here.

5 Numerical illustration

We demonstrate the approach numerically in some concrete stochastic volatility models.
We use the parameters estimated in [24] for German stock index data. We compare four
different models.

1. Firstly, we consider the model in (4.1–4.3) with a Γ-OU subordinator (cf. Example
4.2) and a normal inverse Gaussian (NIG) Lévy process `. Its Lévy exponent ψ` is
given by

ψ`(u) = uµ+ δ
(√

α2 − β2 −
√
α2 − (β + u)2

)
with constants α, δ > 0, µ, β ∈ R such that |β| < α. The estimated parameters in [24]
are α̂ = 90.1, β̂ = −16.0, δ̂ = 85.9, µ̂ = 15.5, λ̂ = 2.54, ζ̂ = 0.847, and η̂ = 17.5.

11
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Figure 1: Optimal initial endowment

2. In the BNS model (1.1) with a Γ-OU process as in Example 4.2, [24] obtains the
estimate µ̂ = 0.904 for the drift parameter of the return process. The estimation
procedure in [24] for the volatility process delivers the same values for λ, ζ and η
as in the above NIG-Γ-OU case. In both stochastic volatility models we set v(0) :=

ζ̂/η̂ = 0.0484, which coincides with the expectation of the stationary law of the
activity process.

3. For a comparison with [16] we consider an exponential Lévy model. Specifically, the
return process is chosen as z = z(0) + ` with a NIG Lévy process `. The correspond-
ing formulas follow from Section 3 or from [16, Theorems 3.1, 3.2]. The estimated
parameters are α̂ = 53.0, β̂ = −5.09, δ̂ = 2.53, µ̂ = 0.288.

4. Finally we consider a Black-Scholes model with estimated variance parameter σ̂2 =

0.0484.

Note that time is measured in years in the above parameterization.
We compute the solution to the mean-variance hedging problem by evaluating the for-

mulas of the previous sections numerically for a European call with strike K = 100 and
a maturity of three months, i.e. T = 0.25. Figure 1 shows the optimal initial endowment
w∗ as a function of the initial asset price S(0). The results are remarkably similar for the
four models. From Figure 2 we see that the same is true for the variance-optimal hedging

12
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Figure 2: Variance-optimal hedging strategy at t = 0

strategy ϑ∗ at t = 0. This is in line with similar observations for exponential Lévy processes
[16] or in the martingale case [21]. In Figure 3 the resulting hedging errors are shown as a
function of S(0). Here the models differ substantially from each other. From an intuitive
perspective, incompleteness may result from both jumps in the stock and stochastic volatil-
ity. Therefore it does not come as a surprise that a model allowing for both yields the highest
expected squared hedging error. Note that the hedging error vanishes in the Black-Scholes
case because variance-optimal hedging is perfect.

A Appendix

We start with facts on semimartingale calculus and affine processes. The proofs of the
statements in Section 3 are given in Section A.3.

A.1 Semimartingale calculus

This paper relies heavily on the calculus of semimartingale characteristics. For the reader’s
convenience we summarize some rules which can be found e.g. in [17, 19, 18]. As in the
whole paper we use the truncation fucntion h(x) = x for ease of notation. This implicitly
means that we assume all relevant semimartingales to be special. The version for general
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semimartingales involving bounded truncation functions can be found in the cited refer-
ences.

Definition A.1 Let X be an Rd-valued semimartingale with local characteristics (b, c, F ).
Then the Rd×d-valued predictable process

c̃(t) := c(t) +

∫
xx>F (t, dx)

is called modified second characteristic of X if the integral exists.

This modified second characteristic appears in the context of predictable covariation pro-
cesses.

Lemma A.2 LetX be an Rd-valued semimartingale with local characteristics (b, c, F ) and
modified second characteristics c̃. If the corresponding integral exists, we have

〈Xi, Xj〉(t) =

∫ t

0

c̃ij(s)ds

for the predictable covariation process of the components of X = (X1, . . . , Xd).

PROOF. [4, Proposition 1.2] �
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Lemma A.3 (Integration) Let X be an Rd-valued semimartingale with local characteris-
tics (b, c, F ) and H an Rn×d-valued predictable process which is integrable with respect to
X . The local characteristics (b̂, ĉ, F̂ ) of the Rn-valued integral process∫ ·

0

H(t)dX(t) :=

(∫ ·
0

Hj·(t)dX(t)

)
j=1,...,n

are of the form

b̂(t) = H(t)b(t),

ĉ(t) = H(t)c(t)H(t)>,

F̂ (t, A) =

∫
1A(H(t)x)F (t, dx) ∀A ∈ Bn with 0 /∈ A.

PROOF. [23, Lemma 3] �

Lemma A.4 (C2-functions) Let X be an Rd-valued semimartingale with local character-
istics (b, c, F ). Suppose that f : U → Rn is twice continuously differentiable on some open
subset U ⊂ Rd such that X,X− are U -valued. Then the local characteristics (b̂, ĉ, F̂ ) of the
Rn-valued semimartingale f(X) are given by

b̂i(t) =
d∑

k=1

∂kfi(X(t−))bk(t) +
1

2

d∑
k,l=1

∂klfi(X(t−))ckl(t)

+

∫ (
fi(X(t−) + x)− fi(X(t−))−

d∑
k=1

∂kfi(X(t−))xk

)
F (t, dx),

ĉij(t) =
d∑

k,l=1

∂kfi(X(t−))ckl(t)∂lfj(X(t−)),

F̂ (t, A) =

∫
1A (f(X(t−) + x)− f(X(t−)))F (t, dx) ∀A ∈ Bn with 0 /∈ A.

PROOF. [12, Corollary A.6] �

Lemma A.5 (Change of measure) Let X be an Rd-valued semimartingale and P ? ∼ P

a probability measure with density process Z. Denote the stochastic logarithm of Z by
L (Z) :=

∫ ·
0

1
Z(t−)

dZ(t). If (X,L (Z)) admits local characteristics (b, c, F ), the P ?-
characteristics (b?, c?, F ?) of (X,L (Z)) are given by

b?i (t) = bi(t) + ci,d+1(t) +

∫
xixd+1F (t, dx), i = 1, . . . , d+ 1,

c?(t) = c(t),

F ?(t, A) =

∫
1A(x)(1 + xd+1)F (t, dx).
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PROOF. [18, Lemma 5.1] �

The following result is needed in the proof of Theorem 3.2.

Lemma A.6 Let X = (X1, . . . , Xd) be an Rd-valued semimartingale such that Xd does
not have jumps of size −1. If (b, c, F ) denote the local characteristics of X , then the local
characteristics (b̂, ĉ, F̂ ) of the Rd+1-valued semimartingale

Y = (Y1, . . . , Yd, Yd+1) :=

(
X1, . . . , Xd−1, log |E (Xd)|,

∑
s≤·

1{∆Xd<−1}

)
are given by

b̂i(t) = bi(t), i = 1, . . . , d− 1,

b̂d(t) = bd(t)−
1

2
cdd(t) +

∫
(log |1 + xd| − xd)F (t, dx),

b̂d+1(t) =

∫
1(−∞,−1)(xd)F (t, dx),

ĉij(t) = cij(t), i, j = 1, . . . , d,

ĉd+1,i(t) = 0, i = 1, . . . , d+ 1,

F̂ (t, A) =

∫
1A
(
x1, . . . , xd−1, log |1 + xd|, 1(−∞,−1)(xd)

)
F (t, dx) ∀A ∈ Bd+1.

PROOF. Denote by (B,C, ν) the (integral) characteristics ofX in the sense of [17, Definition
II.2.6]. The canonical representation of Yd and Yd+1 in the sense of [17, Theorem II.2.34]
equals

Yd = Xc
d + log |1 + xd| ∗ (µX − ν)

+Bd −
1

2
〈Xc

d, X
c
d〉+ (log |1 + xd| − xd) ∗ ν,

Yd+1 = 1(−∞,−1)(xd) ∗ (µX − ν) + 1(−∞,−1)(xd) ∗ ν.

This yields the local characteristics of Y above. �

A.2 Multivariate affine processes

Another key role in this paper is played by affine Markov processes and their characteriza-
tion in terms of generalized Riccati equations. They are studied in depth in [10] and [9]. We
focus here on the subclass needed for our purposes.

Definition A.7 Let X = (v, z) an R+ × Rd -valued semimartingale. We call X time-
inhomogeneous affine process if its local characteristics (b, c, F ) are affine functions of
v(t−)

b(t) = β0(t) + v(t−)β1(t),

c(t) = γ0(t) + v(t−)γ1(t),

F (t, A) = ϕ0(t, A) + v(t−)ϕ1(t, A) ∀A ∈ Bd+1,
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where (βi(t), γi(t), ϕi(t)), i = 0, 1 are strongly admissible Lévy-Khintchine triplets on
Rd+1 in the sense of [20].

As in Section 2 we denote the Lévy exponents corresponding to (βi(t), γi(t), ϕi(t)) for
i = 0, 1 by

ψXi (t, u) = u>βi(t) +
1

2
u>γi(t)u+

∫ (
eu
>x − 1− u>x

)
ϕi(t, dx).

Moreover, we call

ψX(t, u) := ψX0 (t, u) + v(t−)ψX1 (t, u)

Lévy exponent of X . In [10] a generalized Riccati equation is derived for the conditional
characteristic or moment generating function of an affine process.

Lemma A.8 Let X be a time-inhomogeneous affine process as in Definition A.7. The con-
ditional exponential moment E(eu

>X(t)|Fs) for s ≤ t and reasonable u ∈ Cd+1 is given
by

E(eu
>X(t)|Fs) = exp

(
Ψ0(s, t, u) + Ψ1(s, t, u)X1(s) +

d+1∑
i=2

Xi(s)ui

)
,

where Ψ1 is the solution of the terminal value problem

∂1Ψ1(s, t, u) = −ψX1 (s,Ψ1(s, t, u), u2, . . . , ud+1), Ψ1(t, t, u) = u1

and

Ψ0(s, t, u) :=

∫ t

s

(
ψX0 (r,Ψ1(r, t, u), u2, . . . , ud+1)

)
dr.

PROOF. This is proved in [10]; for a reformulation in the above sense cf. [20]. The extension
to u /∈ iRd requires sufficient regularity, cf. [10, Lemma 6.5], [20, Theorem 5.1], [11,
Theorem 3.3], [8, (10.8.2)] in this respect. �

A.3 Proofs of Section 3

In the following we use the notation

(bX1,...,Xd , cX1,...,Xd , FX1,...,Xd) =


 bX1

...
bXd

 ,

 cX1 · · · cX1Xd

... . . . ...
cXdX1 · · · cXd

 , FX1,...,Xd


for the local characteristics of an Rd-valued semimartingale X = (X1, . . . , Xd). An addi-
tional star indicates that the local characteristics refer to measure P ?.
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PROOF OF THEOREM 3.1. We show that L given by (3.4) meets the conditions of Theorem
3.25 in [4] (up to uniform integrability and admissibility). L(T ) = 1 and L > 0 are obvious.
Note that ᾱ(t, α1(t)) ≥ 0 in (3.2). Moreover, the modified terminal value problem

α̃′(t) = −ψX1 (t, α̃(t), 0), α̃(T ) = 0

is solved by α̃ = 0. A comparison argument yields that α1 and hence also α0 are nonpositive.
It remains to prove that

bL(t) = L(t−)
b̄(t)2

c̄(t)
(A.1)

where

b̄(t) := bS(t) +
cSL(t)

L(t−)
+

∫
x1

x2

L(t−)
F S,L(t, dx),

c̄(t) := cS(t) +

∫
x2

1

(
1 +

x2

L(t−)

)
F S,L(t, dx).

The local characteristics of (v, z) are given. They lead immediately to the characteristics of
the process (v, z, I) where I(t) := t denotes the identity process. Application of Lemma
A.4 yields the local characteristics (bS,L, cS,L, F S,L) of (S, L), namely

bS(t) = S(t−)v(t−)ψX1 (t, 0, 1),

bL(t) = L(t−)(α′0(t) + α′1(t)v(t−) + ψX (t, α1(t), 0)),

cS,L(t) =

(
S(t−)2cz(t) S(t−)L(t−)α1(t)cvz(t)

S(t−)L(t−)α1(t)cvz(t) L(t−)2α1(t)2cv(t)

)
,

F S,L(t, A) =

∫
1A(S(t−)(ex2 − 1), L(t−)(eα1(t)x1 − 1))F (t, dx)

∀A ∈ B2 with 0 /∈ A.

We obtain

b̄(t) = S(t−)v(t−)
(
ψX1 (t, α1(t), 1)− ψX1 (t, α1(t), 0)

)
,

c̄(t) = S(t−)2v(t−)κ1(t, α1(t), 0, 0, 1, 1).

By (3.2, 3.3) we have that (A.1) holds. According to [4, Theorem 3.25] the adjustment pro-
cess is given by b̄/c̄, which coincides with (3.5). �

PROOF OF THEOREM 3.2. Since

H =
1

2πi

∫ R+i∞

R−i∞
ez(T )pf̂(p)dp,

Fubinis theorem yields

V (t) =
1

2πi

∫ R+i∞

R−i∞
Vp(t)f̂(p)dp
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with

Vp(t) := EP ?
(
epz(T )E (N? − (N?)t)(T )

∣∣Ft

)
.

From the proof of Theorem 3.1 we know the local characteristics of (S, L). This immedi-
ately yields an expression for the drift coefficient bL (L)(t) = 1

L(t−)
bL(t) (cf. Lemma A.3).

Recall that ZP ?(t) = exp(−
∫ t

0
bL (L)(s)ds) L(t)

L(0)
. By definition we have

N?(t) = −
∫ t

0

a(s)dS(s) +

∫ t

0

a(s)bS?(s)ds,

where bS? denotes the drift coefficient in the local characteristics of S relative to probability
measure P ?. Fix t ∈ [0, T ]. Since

∫ ·
0
a(s)bS?(s)ds is continuous and of finite variation, we

have

E (N? − (N?)t)(T ) = E (U1 + U2)(T ) = E (U1)(T )E (U2)(T ) = E (U1)(T ) exp(U2(T ))

where U1(s) := −
∫ s
t∧s a(r)dS(r) and U2(s) :=

∫ s
t∧s a(r)bS?(r)dr. The conditions on ψX0

and the Lévy measure ϕ1 imply thatU1 has almost surely no jumps of size−1, which implies
that its stochastic exponential E (U1) does not vanish. By [17, I.4.64], E (U1) changes its sign
whenever ∆U1(s) < −1, i.e. we have

E (U1)(s) = exp

(
log |E (U1)(s)|+ iπ

∑
r≤s

1{∆U1(r)<−1}

)
.

By successive application of Lemmas A.3–A.6 we can now determine the local charac-
teristics of the semimartingale Y := (v, z, log |E (U1)|,

∑
s≤· 1{∆U1(s)<−1}, U2) relative to

P ?. Indeed, we start with the local characteristics of (v, z, I) relative to P . Lemma A.3
yields those of (v, z, I,

∫ ·
0
bL (L)(s)ds), Lemma A.4 those of (v, z, I, ZP ?), again Lemma

A.3 those of (v, z, I,L (ZP ?)). Lemma A.5 now leads to the P ?-local characteristics of
(v, z, I,L (ZP ?)). Lemma A.4 yields those of (v, z, S, I), Lemma A.3 those of (v, z, U1, U2)

and finally Lemma A.6 the P ?-local characteristics of Y = (Y1, Y2, Y3, Y4, Y5). Very lengthy
but straightforward calculations yield that they are given by

bY1?(s) = bv(s) + cv(s)α1(s) +

∫
x1(eα1(s)x1 − 1)F (s, dx),

bY2?(s) = bz(s) + cvz(s)α1(s) +

∫
x2(eα1(s)x1 − 1)F (s, dx),

bY3?(s) = −v(s−)ᾱ(s, α1(s))− 1

2
ā2cz(s)

+

∫
(log |1− ā(ex2 − 1)|+ ā(ex2 − 1))eα1(s)x1F (s, dx),

bY4?(s) =

∫
1(1,∞)(ā(ex2 − 1))eα1(s)x1F (s, dx),

bY5?(s) = v(s−)ᾱ(s, α1(s)),

19



cY1?(s) = cv(s),

cY1?Y2?(s) = cvz(s),

cY2?(s) = cz(s),

cY1Y3?(s) = −ācvz(s),
cY2Y3?(s) = −ācz(s),
cY3?(s) = ā2cz(s),

cYiYj?(s) = 0 for i = 1, . . . , 5 and j = 4, 5,

F Y ?(s, A) =

∫
1A
(
x1, x2, log |1− ā(ex2 − 1)|, 1(1,∞)(ā(ex2 − 1)), 0

)
eα1(s)x1F (s, dx)

for any A ∈ B5 and s ∈ [t, T ], where

ā := ā(s, α1(s)).

In particular, Y is a time-inhomogeneous affine process whose characteristic function is
obtained from Lemma A.8. Moreover, we have that

ez(T )pE (N? − (N?)t)(T ) = exp(pY2(T ) + Y3(T ) + iπY4(T ) + Y5(T )).

Hence
Vp(t) = EP ?(exp(pY2(T ) + Y3(T ) + iπY4(T ) + Y5(T ))|Ft) ,

which is obtained from the generalized characteristic or moment generating function of Y
(cf. Lemma A.8). Another lengthy but straightforward calculation shows that

ψY1 (s, q, p, 1, iπ, 1) = ψX1 (s, q + α1(s), p)− ψX1 (s, α1(s), 0)

− ā(s, α1(s))κ1(s, α1(s), q, 0, p, 1),

ψY0 (s, q, p, 1, iπ, 1) = ψX0 (s, q + α1(s), p)− ψX0 (s, α1(s), 0).

This yields that Vp(t) is of the form stated in the assertion. �

PROOF OF THEOREM 3.3. In view of (3.11) we need to compute 〈S, V 〉P ? and 〈S, S〉P ? .
Linearity of the predictable covariation yields

〈S, V 〉P ?(t) =
1

2πi

∫ R+i∞

R−i∞
〈S, Vp〉P

?

(t)f̂(p)dp. (A.2)

In an intermediate step in the proof of Theorem 3.2 we have determined the local charac-
teristics of (v, z, I) relative to P ?. Lemma A.4 yields those of (S, Vp). This leads to the
modified second P ?-characteristics

c̃S,Vp? =

(
c̃S? c̃SVp?

c̃SVp? c̃Vp?

)
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of (S, Vp), which satisfy

c̃S?(t) = S(t−)2

(
cz(t) +

∫
(ex2 − 1)2eα1(t)x1F (t, dx)

)
, (A.3)

c̃SVp?(t) = Vp(t−)S(t−)

(
pcz(t) + Φ1(t, p)cvz(t)

+

∫
(ex2 − 1)(eΦ1(t,p)x1+px2 − 1)eα1(t)x1F (t, dx)

)
. (A.4)

By

〈S, S〉P ?(t) =

∫ t

0

c̃S?(t)ds,

〈S, Vp〉P
?

(t) =

∫ t

0

c̃SVp?(t)ds

and using (3.11, A.2), the assertion follows. �

PROOF OF THEOREM 3.4. From Lemma A.8 we obtain for p, q ∈ C the moment generating
function of the affine process X = (v, z). It is of the form

E
(
eqv(t)+pz(t)

)
= exp(Υ0(0, q, p, t) + Υ1(0, q, p, t)v(0) + pz(0)) (A.5)

with Υ0,Υ1 as in the assertion. Differentiation relative to q yields

E
(
eqv(t)+pz(t)v(t)

)
= exp(Υ0(0, q, p, t) + Υ1(0, q, p, t)v(0) + pz(0))×
× (∂2Υ0(0, q, p, t) + ∂2Υ1(0, q, p, t)v(0)) . (A.6)

An alternative representation of the expected squared hedging error in [4, Theorem 4.12] is

R(w∗, ϑ∗) = E

(∫ T

0

(
c̃V ?(t)− (c̃SV ?(t))2

c̃S?(t)

)
L(t)dt

)
,

where we use the notation of the proof of Theorem 3.3 with V instead of Vp. Bilinearity of
the predictable covariation yields

c̃V ?(t) = − 1

4π2

∫ R+i∞

R−i∞

∫ R+i∞

R−i∞
c̃Vp1Vp2?(t)f̂(p1)f̂(p2)dp1dp2.

The modified second characteristics c̃Vp1Vp2? can be calculated similarly as in the proof of
Theorem 3.3. In particular, we obtain

c̃Vp1Vp2?(t) = Vp1(t−)Vp2(t−)

(
(p1Φ1(t, p2) + p2Φ1(t, p1))cvz(t)

+ p1p2c
z(t) + Φ1(t, p1)Φ1(t, p2)cv(t) (A.7)

+

∫
(eΦ1(t,p1)x1+p1x2 − 1)(eΦ1(t,p2)x1+p2x2 − 1)eα1(t)x1F (t, dx)

)
.
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It remains to determine

E

((
c̃Vp1Vp2?(t)− c̃SVp1?(t)c̃SVp2?(t)

c̃S?(t)

)
L(t)

)
.

From (A.3, A.4, A.7) and v(t) = v(t−) almost surely we obtain after some calculations(
c̃Vp1Vp2?(t)− c̃SVp1?(t)c̃SVp2?(t)

c̃S?(t)

)
L(t) = eΦ̂0+Φ̂1v(t)+pz(t) (%0 + %1v(t)) a.s.

with Φ̂0, Φ̂1, p, %0, %1 as defined in the assertion. By (A.5, A.6) we have

E

((
c̃Vp1Vp2?(t)− c̃SVp1?(t)c̃SVp2?(t)

c̃S?(t)

)
L(t)

)
= %(t, p1, p2).

This yields the assertion. �
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[10] D. Filipović. Time-inhomogeneous affine processes. Stochastic Processes and their
Applications, 115:639–659, 2005.

[11] D. Filipovic and E. Mayerhofer. Affine diffusion processes: theory and applications.
Preprint, 2009.

[12] T. Goll and J. Kallsen. Optimal portfolios for logarithmic utility. Stochastic Processes
and their Applications, 89:31–48, 2000.

[13] C. Gourieroux, J. Laurent, and H. Pham. Mean-variance hedging and numéraire. Math-
ematical Finance, 8:179–200, 1998.

[14] D. Heath, E. Platen, and M. Schweizer. A comparison of two quadratic approaches to
hedging in incomplete markets. Mathematical Finance, 11(4):385–413, 2001.

[15] S. Heston. A closed-form solution for options with stochastic volatilities with appli-
cations to bond and currency options. The Review of Financial Studies, 6:327–343,
1993.

[16] F. Hubalek, L. Krawczyk, and J. Kallsen. Variance-optimal hedging for processes with
stationary independent increments. The Annals of Applied Probability, 16:853–885,
2006.

[17] J. Jacod and A. Shiryaev. Limit Theorems for Stochastic Processes. Springer, Berlin,
second edition, 2003.

[18] J. Kallsen. σ-localization and σ-martingales. Theory of Probability and Its Applica-
tions, 48:152–163, 2004.

[19] J. Kallsen. A didactic note on affine stochastic volatility models. In Yu. Kabanov,
R. Liptser, and J. Stoyanov, editors, From Stochastic Calculus to Mathematical Fi-
nance, pages 343–368. Springer, Berlin, 2006.

[20] J. Kallsen and J. Muhle-Karbe. Exponentially affine martingales, affine measure
changes and exponential moments of affine processes. Preprint, 2008.

[21] J. Kallsen and A. Pauwels. Variance-optimal hedging for time-changed Lévy pro-
cesses. Preprint, 2009.

[22] J. Kallsen and A. Pauwels. Variance-optimal hedging in general affine stochastic
volatility models. Preprint, 2009.

23



[23] J. Kallsen and A. Shiryaev. Time change representation of stochastic integrals. Theory
of Probability and Its Applications, 46:522–528, 2002.

[24] J. Muhle-Karbe. On Utility-Based Investment, Pricing and Hedging in Incomplete
Markets. Ph.D. dissertation (TU München), München, 2009.

[25] A. Pauwels. Varianz-optimales Hedging in affinen Volatilitätsmodellen. Ph.D. disser-
tation (TU München), München, 2007.

[26] H. Pham. On quadratic hedging in continuous time. Mathematical Methods of Opera-
tions Research, 51:315–339, 2000.

[27] K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge University
Press, Cambridge, 1999.

[28] M. Schweizer. A guided tour through quadratic hedging approaches. In E. Jouini,
J. Cvitanic, and M. Musiela, editors, Option Pricing, Interest Rates and Risk Manage-
ment, pages 538–574. Cambridge University Press, Cambridge, 2001.

24


