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Abstract. We characterize the superposition operators from an analytic Besov space
or the little Bloch space into a Bergman space in terms of the order and type of the
symbol. We also determine when these operators are continuous or bounded. Along the
way, we prove new non-centered Trudinger-Moser inequalities and solve the problem
of interpolation by univalent functions in analytic Besov spaces.

Introduction

Characterizing the superposition operators Sϕ, defined by Sϕ(f) := ϕ ◦ f , that take
one space, X, of analytic functions on the disk to another such space, Y , where X ⊂ Y ,
helps us to compare the growth of functions in those spaces. The natural associated
questions are:

For which entire functions ϕ is Sϕ(X) ⊂ Y ?
When is Sϕ continuous (bounded, Montel compact)?

Similar real variable problems have a long history [AZ], but such questions have only
recently been studied in complex function theory; see [CG], [Ca], [BFV], [AMV], [X],
and [BV].

Here we continue this line of research by considering the superposition operators from
analytic Besov space Bp and the little Bloch space B0 to Bergman space Aq. We will
review the definitions of all basic spaces in Section 1.

Our first main result characterizes those operators in terms of E(t), the class of entire
functions of order less than a positive number t, or of order t and finite type.

Theorem 1. Suppose 1 < p < ∞ and 0 < q < ∞. Then Sϕ(Bp) ⊂ Aq if and only if
ϕ ∈ E(p/(p−1)), and Sϕ(B0) ⊂ Aq if and only if ϕ ∈ E(1). All superposition operators
from Bp or B0 to Aq are continuous (as maps between metric spaces).

Since Sϕ is nonlinear if ϕ(z) 6≡ cz, there is no reason that continuity and boundedness
should be equivalent. Indeed there are continuous unbounded superposition operators
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from Bp to Aq, as revealed by the following characterization of boundedness and com-
pactness. Below, E0(t) is the class of entire functions of order less than t, or of order t
and type zero.

Theorem 2. Suppose 1 < p < ∞ and 0 < q < ∞. Then Sϕ is bounded from Bp to
Aq if and only if ϕ ∈ E0(p/(p − 1)), and Sϕ is bounded from B0 to Aq if and only if
ϕ ∈ E0(1). All such bounded operators are Montel compact.

Theorems 1 and 2 are proved in Section 4, after some preparatory work. We note
that these results do not seem to follow in any obvious way from the known descriptions
of interpolation sequences such as the unpublished manuscript by Donald Marshall and
Carl Sundberg, or the paper of Böe [Boe].

The key to proving continuity in Theorem 1 is the following non-centered Trudinger-
Moser inequality which may be of independent interest; see Section 2.

Theorem 3. Let 1 < p < ∞ and, for α, r > 0 and f ∈ Bp, define

Mα;r,f := sup

{∫

D
exp

(
α|g|p/(p−1)

)
dA : ‖g − f‖Bp ≤ r

}
.

Also let Mα := Mα;1,0 and sp := sup{α : Mα < ∞}.
(a) 0 < sp < ∞. Moreover, there exists c = c(p) > 0 such that Ec ≤ 2.
(b) Let α > 0 and f ∈ Bp. Then Mα;r,f < ∞ for all 0 ≤ r < r0 := (sp/α)(p−1)/p,

and Mα;r,f = ∞ for all r > r0.

The main novelty in the above theorem is its non-centered nature; note that the
conclusions are independent of the “center point” f . Trudinger-Moser inequalities,
which give some type of exponential integrability of a function whose derivative satisfies
some integrability condition, go back to Beurling’s thesis [Be]; see also [CM], [Ch,
Lecture 3], and [BO]. Also in Section 2, we obtain a sharper variant of Theorem 3 for
the Dirichlet space D and also a variant for B0.

The key to proving boundedness in Theorem 2 is the following result on growth rate
of Bp functions; see Section 3.

Theorem 4. Given a number p ∈ (1,∞) and a decreasing positive sequence {rn} ∈ lp,
with r1 ≤ 1, there exists a univalent function f ∈ Bp and a constant c = c(p) > 0 such
that f(0) = 0 and

(1) |f(zn)|p/(p−1) ≥ c rn log
1

1− |zn| , n ∈ N ,

for some sequence of points {zn} in the disk such that |zn| → 1.
Moreover, (1) can be obtained with the additional requirement that f(zn) = wn for

any prescribed sequence {wn}∞n=1 in the plane with the following properties for all n ∈ N:
(i) w0 = 0, |w1| > 1;
(ii) 2|wn| < |wn+1|;
(iii) 0 ≤ arg wn < π/4.
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The fact that the maps constructed in the above theorem interpolate the prescribed
fast-growing values wn at the same points zn is a novel aspect of this theorem, and
essential to the proof of Theorem 2. The theorem proves sharpness in a strong sense
of the well-known estimate of Holland and Walsh [HW] on the order of growth of a
function in Bp, p > 1:

(2) |f(z)| = o

((
log

1

1− |z|
)1−1/p

)
, as |z| → 1− .

Also in Section 3, a B0 variant of Theorem 4 is proved.

1. Background

Throughout, C will denote the complex plane, D the unit disk {z ∈ C : |z| < 1}, T
the unit circle {z ∈ C : |z| = 1}, and dA(z) := π−1 dx dy = π−1r dr dθ the normalized
area measure on D. A disk of radius r centered at w is denoted D(w, r), while [z, w]
means the line segment from the point z to the point w.

Given two positive expressions A,B, we write A . B, or B & A, to mean that
A ≤ CB for some constant C dependent only on allowed parameters (which should
be clear from the context). We write A ≈ B to mean that A . B . A. We write
C = C(p, q, . . . ) to indicate that C depends only on the parameters p, q, . . . .

We say that a complex function ϕ acts by superposition from one class of analytic
functions X to another class Y if ϕ ◦ f ∈ Y whenever f ∈ X; note that ϕ must
be entire if X contains the linear functions. In this case we define the superposition
operator Sϕ : X → Y with symbol ϕ by Sϕ(f) := ϕ ◦ f . If X and Y have associated
metrics, we define continuity of Sϕ in the usual sense, and we say that Sϕ is bounded if
it maps bounded sets into bounded sets and Montel compact if it maps bounded sets
into relatively compact sets.

1.1. Hyperbolic metric. The hyperbolic distance between the points z and w in D is
defined as

%(z, w) := inf
γ

∫

γ

|dζ|
1− |ζ|2 =

1

2
log

1 +
∣∣ z−w
1−zw

∣∣
1−

∣∣ z−w
1−zw

∣∣ ,

where the infimum is taken over all rectifiable curves γ in D joining z and w. The
hyperbolic metric %Ω on a simply connected domain Ω ( C is now defined by pullback:
given a univalent mapping f of D onto Ω, we have

ρΩ(f(z), f(w)) := ρ(z, w) = inf
Γ

∫

f−1(Γ)

|dζ|
1− |ζ|2 ,

where the infimum is taken over all rectifiable curves Γ in Ω from f(z) to f(w). This
definition is easily seen to be independent of f . It follows that if f(0) = 0 then

(3) %Ω(0, f(z)) = %(0, z) ≥ 1

2
log

1

1− |z| , for all z ∈ D .



4 S.M. BUCKLEY AND D. VUKOTIĆ

On the other hand, it is well-known that

(4) %Ω(w1, w2) ≤ inf
Γ

∫

Γ

|dw|
dist(w, ∂Ω)

,

where the infimum is taken over all rectifiable curves Γ in Ω from w1 to w2. We refer
the reader to [P, Chapter 4] for all these properties.

1.2. Hardy and Bergman spaces. We denote by Hp the well-known Hardy space of
functions analytic in D for which

‖f‖p
Hp := sup

0<r<1

(∫ 2π

0

|f(reiθ)|p dθ

2π

)1/p

< ∞ .

All Hp functions have radial limits, written as f(eiθ), almost everywhere on T.
The Bergman space Ap, 0 < p < ∞, is the space of functions analytic on D with

‖f‖p
Ap :=

∫

D
|f(z)|p dA(z) < ∞ .

For more on Bergman spaces, see [HKZ] and [DS]. We only mention a few facts about
them that we need.

The space Ap is a Banach space when p ≥ 1, and a complete metric space with metric
dp(f, g) := ‖f − g‖p

Ap when p < 1. For all 0 < q < p < ∞, Ap is compactly embedded
in Aq; see [Ax]. Using subharmonicity, it is readily seen that ‖f‖Ap ≤ ‖f‖Hp for all
f ∈ Hp, and that

(5) (1− |z|)2|f(z)|p ≤ ‖f‖p
Ap , f ∈ Ap, z ∈ D .

Defining the weighted Dirichlet-type space Dp
p as the set of all analytic functions in D

with finite norm

(6) ‖f‖p
Dp

p
:= |f(0)|p + (p + 1)

∫

D
|f ′(z)|p(1− |z|2)pdA(z) ,

a theorem of Hardy and Littlewood [HL] essentially shows that Dp
p and Ap coincide and

have comparable norms for all 0 < p < ∞; for a proof, see [D, Theorem 5.6] and the
method of [D, Theorem 5.5].

1.3. Besov and Bloch spaces. The (analytic) Besov space Bp, 1 < p < ∞, is the
Banach space of functions analytic on D for which

‖f‖Bp := |f(0)|+
(

(p− 1)

∫

D
|f ′(z)|p(1− |z|2)p−2 dA(z)

)1/p

< ∞ .

The Bloch space B is the Banach space of all functions analytic in D for which

‖f‖B := |f(0)|+ sup
z∈D

(1− |z|2)|f ′(z)| < ∞ .

The little Bloch space B0 is the set of all f ∈ B such that lim|z|→1−(1− |z|2)|f ′(z)| = 0.
It is the natural limit as p → ∞ of Bp, as well as the closure of the polynomials in B.
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For more on these spaces and their operators, see [AFP], [HW], [Z], [BFV], [DGV], and
[Boe]. Here we mention only a few facts that we need.

First we note that Bp ⊂ Bq whenever p < q, and that these spaces are conformally
invariant: if f ∈ Bp, then f ◦ φ ∈ Bp for every disk automorphism φ. The Dirichlet
space is D := B2. We note that D ⊂ Hp, 0 < p < ∞; see [D, Chapter 6, Exercise 7],
for instance.

By integrating the inequality |f ′(z)| ≤ ‖f‖B/(1− |z|2) along a line segment, we get

(7) |f(z)− f(0)| ≤ |f(0)|+ (‖f‖B − |f(0)|)%(0, z) , z ∈ D .

Given a simply connected domain Ω ( C, we denote by dΩ(w) the distance from w
to ∂Ω. The following Koebe distortion estimates for a univalent map f : D → Ω are
well known [P, Corollary 1.4]:

dΩ(f(z)) ≤ |f ′(z)|(1− |z|2) ≤ 4dΩ(f(z)) ,

and they readily imply the following lemma; for proofs of different parts, see [ACP],
[W], [BFV], and [DGV].

Lemma A. Let f be a univalent map of D onto a simply connected domain Ω. Then

(a) f ∈ Bp, 1 < p < ∞, if and only if
∫
Ω

dΩ(w)p−2 dA(w) < ∞;
(b) f ∈ B if and only if supw∈Ω dΩ(w) < ∞;
(c) f ∈ B0 if and only if lim|f−1(w)|→1, w∈Ω dΩ(w) = 0.

We shall need the test functions

(8) fr,p := cr,p log(1/(1− rz))(log(1/(1− r2))−1/p, 0 < r < 1, 1 < p < ∞,

where cr,p > 0 is chosen so that ‖fr,p‖Bp = 1. Denoting by Γ the classical gamma
function, we note that cp

r,p is asymptotic to (Γ(p/2))2/Γ(p− 1) as r → 1−. This can be
seen by checking the proof of Theorem 1.7 in [HKZ].

2. Inequalities of Trudinger-Moser type

In this section, we prove non-centered variants of existing Trudinger-Moser type in-
equalities. We begin with the proof of Theorem 3.

Proof of Theorem 3. The fact that there exists c > 0 such that Ec ≤ 2 is a restatement
of the case α = 0 of [BFV, Theorem 23]. Thus sp > 0, and we need only show that
sp < ∞. Consider the functions fr,p defined by (8), and take r = 1− ε for 0 < ε < 1/2.
The asymptotic formula for cr,p tells us that there is a number b = b(p) > 0 such that

f1−ε,p(z) ≥ b log1−1/p(1/ε) in the disk D(r, ε). It follows that if α is sufficiently large,
then exp

(
α|f1−ε,p|p/(p−1)

) ≥ ε−3 on D(r, ε), and so
∫

D

exp
(
α|f1−ε,p|p/(p−1)

)
dA →∞ as ε → 0.

Letting ε → 0, we see that Mα = ∞, and so sp < ∞ as required.
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We now prove (b). Suppose that ‖f − g‖Bp ≤ r < r0, and write r1 = (r + r0)/2, so
that r < r1 < r0. Since the polynomials are dense in Bp [AFP, Proposition 2], we can
find a polynomial h so that ‖f − h‖Bp ≤ r1 − r. Next note the following elementary
inequality for real numbers, which can be proved by calculus:

(9) (a + b)s ≤ Cεa
s + cεb

s, a, b, ε > 0, s > 1,

where Cε = (1 + 1/ε)s−1 and cε = (1 + ε)s. Applying this inequality with a = |h(z)|,
b = |g(z)− h(z)|, and s = p/(p− 1), we see that∫

D
exp

(
α|g|p/(p−1)

)
dA ≤

∫

D
exp

(
αCε|h|p/(p−1)

) · exp
(
αcε|g − h|p/(p−1)

)
dA

Since h is a polynomial, the first factor in this integrand is bounded and can be
discarded. To bound the resulting integral, we choose ε > 0 so small that t1 ≤
(sp/αcε)

(p−1)/p. Now ‖g − h‖Bp ≤ t1, and so ‖(g − h)/t1‖Bp ≤ 1. Applying part

(a) to (g − h)/t1, and noting that αcεt
p/(p−1)
1 ≤ α, we see that∫

D
exp

(
αcε|g − h|p/(p−1)

)
dA ≤ Mα < ∞.

Thus Mα;r,f < ∞, as required.
Suppose instead that r > r0. We must prove that Mα;r,f = ∞. Let r1 := (r + r0)/2

and τ := (r1/r0)
p/(p−1) > 1. Pick a polynomial h so close to f that ‖f − h‖ ≤ r − r1.

By definition of sp, we can choose functions {un} in the unit ball of Bp such that∫

D
exp

(
τ 1/2sp|un|p/(p−1)

)
dA →∞ as n ∈ N .

Letting vn := r1un = (τsp/α)(p−1)/pun, this last inequality can be rewritten as

(10)

∫

D
exp

(
τ−1/2α|vn|p/(p−1)

)
dA →∞ as n ∈ N .

We now define gn := vn + h. Since |vn| ≤ |h|+ |gn|, we can apply (9) to get that

exp
(
τ−1/2α|vn|p/(p−1)

) ≤ exp
(
Cετ

−1/2α|h|p/(p−1)
) · exp

(
cετ

−1/2α|gn|p/(p−1)
)
.

Now h is a polynomial, so the first factor on the right is bounded. Thus it follows from
(10) that for every ε > 0,∫

D
exp

(
cετ

−1/2α|gn|p/(p−1)
)

dA →∞ as n ∈ N .

By choosing ε = τ (p−1)/2p − 1, we deduce that∫

D
exp

(
α|gn|p/(p−1)

)
dA →∞ as n ∈ N .

But

‖gn − f‖Bp = ‖vn + (h− f)‖Bp ≤ ‖vn‖Bp + ‖h− f‖Bp ≤ r1 + (r − r1) = r ,
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and so we conclude that Mα;r,f = ∞. ¤
Let us make a couple of remarks on the above theorem. First note that by expanding

the exponential function as a power series, it follows from (a) that for every 1 < p < ∞
and 0 < q < ∞, there exists C = C(p, q) such that

(11) ‖f‖Aq ≤ C‖f‖Bp , f ∈ Bp.

Although Theorem 3(b) is a sharp non-centered variant of [BFV, Theorem 23], it
involves the unknown quantity sp whose value we do not in general know. An exception
is that s2 = 1, as follows readily from the famous Chang-Marshall inequality [CM,
Theorem 1]. We now state a non-centered variant of that result.

Theorem 5. For α, r > 0 and f ∈ D, let

Mα;r,f := sup

{∫

T
exp

(
α|g(eiθ)|2) dθ : ‖g − f‖D ≤ r

}
.

Also let Mα := Mα;1,0 and s2 := sup{α : Mα < ∞}.
(a) Mα < ∞ if and only if α ≤ 1; in particular s2 = 1.
(b) Let α > 0 and f ∈ D. Then Mα;r,f < ∞ for all 0 ≤ r < r0 := α−1/2, and

Mα;r,f = ∞ for all r > r0.

Proof. Let us write If :=
∫
T exp

(|f(eiθ)|2) dθ, f ∈ D. Part (a) is a slight improvement
on the Chang-Marshall inequality, which tells us that there exists a constant K < ∞
such that If ≤ K whenever f ∈ D, ‖f‖D ≤ 1, and f(0) = 0 [CM, Theorem 1].

We deduce a uniform bound for If over all f ∈ D, ‖f‖D ≤ 1. Such a bound is trivial
when f is constant, so we assume that f is nonconstant and write g := f − f(0). Then
|f(0)| < 1 and

(12)

∫

T
exp

(|f(eiθ)|2) dθ ≤ e

∫

T
exp

(|g(eiθ)|2) · exp
(
2|f(0)| |g(eiθ)|) dθ .

Writing β := 1/(1− |f(0)|), we note that ‖βg‖D ≤ 1 and 1 + |f(0)| ≤ β2. Therefore∫

T
exp

(|g(eiθ)|2) · exp
(|f(0)| |g(eiθ)|2) dθ ≤

∫

T
exp

(
β−2|g(eiθ)|2) ≤ K .

Thus if make separate estimates for those points θ ∈ T where |g(eiθ)| is less than or
equal to, or greater than, 2, it follows from (12) that∫

T
exp

(|f(eiθ)|2) dθ ≤ e9 + Ke .

We have shown that E1 ≤ e9 + Ke.
The fact that Mα = ∞ when α > 1 is well-known, and goes back to the work of

Beurling [Be]. In fact he proved this using the functions fr,2 defined in (8).
The proof of (b) is very similar to the proof of Theorem 3(b), so we omit it. ¤
Finally in this section, we state a little Bloch analogue of Theorem 3.
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Theorem 6. For α, r > 0 and f ∈ B0, define

mα;r,f := sup

{∫

D
exp (α|g|) dA : ‖g − f‖B0 ≤ r

}
.

Also let mα := mα;1,0 and s∞ := sup{α : mα < ∞}.
(a) 2 ≤ s∞ ≤ 4.
(b) Let α > 0 and f ∈ B0. Then mα;r,f < ∞ for all 0 ≤ r < r0 := s∞/α, and

mα;r,f = ∞ for all r > r0.

Proof. The functions fr(z) := 1
2
log((1 + rz)/(1− rz)), 0 < r < 1, all lie in the unit ball

of B0. By estimating fr on the disk D(r, 1− r) and letting r → 1−, it is easy to see that
mα = ∞ for α > 4. The estimate s∞ ≥ 2 easily follows from (7).

For part (b), we use the fact that polynomials are dense in B0 and argue as in
Theorem 3(b), except that we do not need (9). ¤

3. Univalent interpolation at a prescribed growth rate

We construct a family of examples of functions in Bp which prove that the Holland-
Walsh estimate (2) is quite sharp. These examples achieve a prescribed “little-oh” rate of
growth on an infinite sequence of points and, on that same sequence, take on prescribed
values which grow at a fast exponential rate. This last feature will be fundamental in
Section 4.

Proof of Theorem 4. By (ii), we have |wn| → ∞ and |wn+1−wn| → ∞ as n →∞. Also
by (ii), we readily see that there exists C = C(p) such that

(13)
n∑

k=1

r−1
k |wk − wk−1|p/(p−1) ≤ Cr−1

n |wn|p/(p−1) , n ∈ N .

Writing hn := rn|wn −wn−1|−1/(p−1), n ∈ N, we have hn < rn, n ∈ N. Now define the
domain Ω :=

⋃∞
n=0 (D(wn, rn) ∪Rn+1), where

Rn :=
⋃

w∈[wn−1,wn]

D(w, hn) , n ∈ N ,

By construction, Rn and Rm intersect if and only if |m−n| ≤ 1. It is also straightforward
to show that Ω is simply connected, since it is the union of an ascending chain of simply
connected domains; see also Step 3 of the proof of [DGV, Theorem 2.1].

Let f be a conformal map of D onto Ω that fixes the origin. By our assumptions on
rn and our choice of hn, it is clear that

∞∑
n=1

rp
n +

∞∑
n=1

hp−1
n |wn − wn−1| < ∞,
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But using Lemma A, it is not hard to see that this last inequality is exactly what we
need to conclude that f ∈ Bp; for more details, see a similar construction in [BFV,
Proposition 7].

Writing zn := f−1(wn), it is clear that |zn| → 1− as n → ∞. Using inequality (3),
the triangle inequality, property (4), the definitions of Ω and hn, and estimate (13), we
obtain

log
1

1− |zn| . %Ω(0, wn) ≤
n∑

k=1

%Ω(wk−1, wk)

.
n∑

k=1

|wk − wk−1|
hk

=
n∑

k=1

r−1
k |wk − wk−1|p/(p−1) . r−1

n |wn|p/(p−1) .

This proves (1), and we are done. ¤

We now state a B0 variant of this last theorem; compare with the result for B in
[AMV, Lemma 2].

Lemma 7. Given a decreasing positive sequence {rn}, with r1 ≤ 1, there exists a uni-
valent function f ∈ B0 and a constant c > 0 such that f(0) = 0 and

(14) |f(zn)| ≥ c rn log
1

1− |zn| , n ∈ N

for some sequence of points {zn} in the disk such that |zn| → 1.
Moreover, (14) can be obtained with the additional requirement that f(zn) = wn for

any prescribed sequence {wn}∞n=1 in the plane with the following properties for all n ∈ N:
(i) w0 = 0, |w1| > 1;
(ii) 2|wn| < |wn+1|;
(iii) 0 ≤ arg wn < π/4.

Proof. The argument is similar to, but easier than, Theorem 4, so we shall be sketchy.
Let Ω be the simply connected domain

⋃∞
n=1 Rn, where

Rn :=
⋃

w∈[wn−1,wn]

D(w, rn) , n ∈ N ,

Let f be a conformal map of D onto Ω that fixes the origin, so that f ∈ B0 according
to Lemma A.

Writing zn := f−1(wn), it is clear that |zn| → 1− as n →∞. As before, we see that

log
1

1− |zn| . %Ω(0, wn) ≤
n∑

k=1

%Ω(wk−1, wk) .
n∑

k=1

r−1
k |wk − wk−1| . r−1

n |wn| .

This proves (14), and we are done. ¤
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4. Superposition operators from Besov spaces to Bergman spaces

If Sϕ(Aq) is a subset of Bp, or of B0, then Sϕ(Aq) ⊂ B and so, according to [AMV],
the function ϕ must be identically zero. In this section, we tackle the reverse action.
More precisely, we characterize the superposition operators Sϕ that act, or are bounded,
or are continuous, from Bp to Aq in terms of the order and type of the symbol ϕ.

Since an Aq function grows as the power −1/q of the distance to the boundary and
a Bp function grows at most like the power 1 − 1/p of the logarithm of the reciprocal
value of the distance, and both estimates are sharp, it is to be expected that Bp should
be “contained exponentially” in Aq. This is indeed the case.

Recall that the order of a non-constant entire function ϕ is

(15) ρ := lim sup
r→∞

log log M(r, ϕ)

log r
,

where M(r, ϕ) := max{|ϕ(z)| : |z| = r}. The type σ of an entire function ϕ of order ρ
(0 < ρ < ∞) is

(16) σ := lim sup
r→∞

log M(r, ϕ)

rρ
.

See the first two chapters of [Boa] for more on entire functions.
Recall that E(t) consists of all entire functions of order less than t, or of order t and

finite type. Equivalently, ϕ ∈ E(t) if and only if there exists a constant α such that
|ϕ(z)| ≤ exp(α|z|t), for all sufficiently large z ∈ C. Also recall that E0(t) consists of all
entire functions of order less than t, or order t and type 0, that is ϕ ∈ E0(t) if and only
if for all ε > 0, there exists R such that |ϕ(z)| ≤ exp(ε|z|t), for all |z| ≥ R.

4.1. Operators acting (continuously) from Bp to Aq. Here we prove Theorem 1,
thereby characterizing the (continuous) superposition operators from Bp to Aq. Let us
first note that a part of this theorem follows from [BFV, Theorem 26]. Indeed if we
take β = q in that result, and note that Dq

q = Aq, then for the case 0 < q ≤ p, we
get that Sϕ(Bp) ⊂ Aq if and only if ϕ ∈ E(p/(p − 1)). However, the case q > p is
not covered by that result, and continuity of such operators was not addressed either in
[BFV]. The superposition operators from the Bloch space B to Aq were characterized
in [AMV, Theorem 3].

Proof of Theorem 1. Given ϕ ∈ E(p/(p− 1)), there exist constants C,α such that

|ϕ(w)| ≤ C exp
(
α|w|p/(p−1)

)
, w ∈ C .

By the case r = 0 of Theorem 3(b),
∫

D
|ϕ(f(z)|q dA(z) ≤ Cq

∫

D
exp

(
qα|f(z)|p/(p−1)

)
dA(z) < ∞ ,

whenever f ∈ Bp. Thus Sϕ(Bp) ⊂ Aq.
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If f ∈ B0 then similarly the case r = 0 of Theorem 6(c) implies that Sϕ(B0) ⊂ Aq for
all ϕ ∈ E(1).

We now tackle necessity. In order to arrive at a contradiction, suppose that Sϕ(Bp) ⊂
Aq, but that ϕ 6∈ E(p/(p− 1)). Without loss of generality we may add a constant to ϕ
so that ϕ(0) = 0, as this will not change the order and type. It follows from (15) that
there exists a sequence of points {wn}∞n=1 in the plane such that

(17) |ϕ(wn)| ≥ exp
(
n2 |wn|p/(p−1)

)
, n ∈ N .

Clearly, |wn| → ∞ as n → ∞, so we may extract a convergent subsequence entirely
located in an angular sector of aperture π/4, rotate it if necessary, and select a further
convergent subsequence to obtain a new sequence, labelled again {wn} so as to satisfy
the assumptions of Theorem 4, after adding the point w0 = 0 to the sequence. We
choose

rn :=
1

n
and hn :=

1

n|wn+1 − wn|1/(p−1)
.

Let again f be a univalent map of D onto the corresponding domain Ω and let zn :=
f−1(wn), with z0 = 0. Our choice of rn and hn above readily yield that f ∈ Bp. By (5),
(17), and (1), we have

‖ϕ ◦ f‖q
Aq ≥ (1− |zn|)2|ϕ(f(zn))|q

≥ (1− |zn|)2 exp
(
q n2 |f(zn)|p/(p−1)

)

≥ (1− |zn|)2−c q n

≥ (1− |zn|)−1

whenever n > 3/cq. This last expression is unbounded as n → ∞, giving the desired
contradiction.

In the case of the little Bloch space, suppose for the sake of contradiction that
Sϕ(B0) ⊂ Aq, but that ϕ 6∈ E(1). Then there is a sequence of points {wn}∞n=1, |wn| → ∞,
such that

(18) |ϕ(wn)| ≥ exp
(
n2 |wn|

)
, n ∈ N .

As before, we may assume that {wn} satisfies the assumptions of Lemma 7, after adding
the point w0 = 0 to the sequence. We choose rn := 1/n, and let f be a univalent map
of D onto the corresponding domain Ω, and zn := f−1(wn), with z0 = 0. Thus f ∈ B0

and, as before,

‖ϕ ◦ f‖q
Aq ≥ (1− |zn|)2|ϕ(f(zn))|q

≥ (1− |zn|)2 exp
(
q n2 |f(zn)|)

≥ (1− |zn|)2−c q n

≥ (1− |zn|)−1

whenever n > 3/cq, thus giving the desired contradiction.
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It remains to prove that all of these operators are continuous. Since ‖ · ‖Aq is an
increasing function of q, we may assume that q ≥ 1. We fix ϕ ∈ E(p/(p−1)). It follows
that also ϕ′ ∈ E(p/(p− 1)); see [T, 8.51]. Thus we can choose constants C,α such that
|ϕ′(z)| ≤ C exp(α|z|p/(p−1)) for all z ∈ C.

Let us fix f ∈ Bp. By calculus, there exists a convex linear combination F (z) of f(z)
and g(z) such that

|ϕ(f(z))− ϕ(g(z))| ≤ |f(z)− g(z)| · |ϕ′(F (z))|.
By Cauchy-Schwarz we deduce that

∫

D
|ϕ ◦ f − ϕ ◦ g|q dA ≤

(∫

D
|f − g|2q dA

)1/2 (∫

D
|ϕ′ ◦ F |2q dA

)1/2

.

By (11), we see that the first factor on the right is at most C‖f − g‖q
Bp , so continuity

follows if we show that the second factor is bounded when ‖f−g‖Bp is sufficiently small.
Since

|F |t ≤ (|f |+ |g|)t ≤ 2t−1(|f |t + |g|t) , t ≥ 1,

it follows from the growth estimate on ϕ′ and Cauchy-Schwarz that
∫

D
|ϕ′ ◦ F |2q ≤ C2q

∫

D
exp

(
2p/(p−1)qα|f(z)|p/(p−1)

) · exp
(
2p/(p−1)qα|g(z)|p/(p−1)

)
dA

≤ C2q

(∫

D
exp

(
2(2p−1)/(p−1)qα|f |p/(p−1)

))1/2

·
(∫

D
exp

(
2(2p−1)/(p−1)qα|g|p/(p−1)

))1/2

.

The boundedness of both of these factors (by a quantity independent of g) follows from
Theorem 3(b) as long as

‖f − g‖Bp < r <

(
sp

2(2p−1)/(p−1)qα

)(p−1)/p

.

Replacing Theorem 3(b) by Theorem 6(b), the argument for B0 is very similar to that
for Bp, so we omit it. ¤

Remark 8. Since Hq ⊂ Aq, it immediately follows from the above theorem that ϕ ∈
E(p/(p − 1)) is a necessary condition for Sϕ(Bp) ⊂ Hq whenever 1 < p < ∞ and
0 < q < ∞. However we do not know if it is sufficient. An exception is the case p = 2,
since we can then use Theorem 5 in place of Theorem 3; the key difference is that we
integrate over T rather than D. These superposition operators can be shown to be
continuous in a similar fashion.

Remark 9. It is clear from the above proof of continuity, that superposition operators
Sϕ : X → Aq, where X = Bp or X = B0, actually satisfy the following local Lipschitz
condition:

‖Sϕ(g)− Sϕ(f)‖Aq ≤ Cf‖g − f‖X ,
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provided that ‖g − f‖X < r, where r > 0 is independent of f, g. Note that the local
Lipschitz constant Cf depends essentially on f . See [CG] for analogous results for Ap.

4.2. Operators bounded from Bp to Aq. Finally, we prove Theorem 2, thereby
characterizing the bounded superposition operators from Bp or B0 to Aq. Since the
answer is independent of q and Ar embeds compactly in Aq whenever 0 < q < r, such
bounded operators are automatically Montel compact (i.e., they send bounded sets
to relatively compact sets). We note that the bounded operators from B to Aq were
characterized in [AMV] and are easily seen to be compact because of the compactness
of injections from smaller into larger Bergman spaces.

Proof of Theorem 2. To prove sufficiency, assume that ϕ ∈ E0(p/(p − 1)). We need to
show that for all C > 0, there exists a constant K such that

sup

{∫

D
|ϕ ◦ f |q dA : ‖f‖Bp ≤ C

}
≤ K .

If 0 < α ≤ c = c(p), then Theorem 3(a) implies that

(19) sup

{∫

D
exp

(
α|g|p/(p−1)

)
dA : ‖g‖Bp ≤ 1

}
≤ 2 .

Let us suppose that ‖f‖Bp ≤ C, and choose ε = c/Cp/(p−1)q, where c is as in (19). Since
ϕ ∈ E0(p/(p−1)), there exists a positive number R0 such that |ϕ(w)| ≤ exp

(
ε|w|p/(p−1)

)
whenever |w| > R0. Applying (19), we see that∫

D
|ϕ ◦ f |q dA =

∫

{z:|f(z)|≤R0}
|ϕ ◦ f |q dA +

∫

{z:|f(z)|>R0}
|ϕ ◦ f |q dA

≤ M(R0, ϕ)q +

∫

D
exp(qε|f(z)|p/(p−1)) dA(z)

≤ M(R0, ϕ)q + 2 .

Since M(R0, ϕ) depends only upon ϕ, p, and C, the boundedness of Sϕ is proved.
The B0 case follows from [AMV, Theorem 3] which says that the bounded superpo-

sition operators from B0 to Aq are precisely those Sϕ for which ϕ ∈ E0(1).
We now prove necessity. Assume, on the contrary, that Sϕ maps Bp boundedly into

Aq but ϕ /∈ E0(p/(p − 1)). Thus there exists a number σ > 0 and a sequence {wn} in
the plane such that 1 < |wn| → ∞ and

(20) |ϕ(wn)| ≥ exp
(
σ|wn|p/(p−1)

)
, n ∈ N .

Now choose C large enough so that qσCp/(p−1) > 2. Since Sϕ is bounded, there exists
a constant K with the property that ‖ϕ ◦ f‖q

Aq ≤ K whenever ‖f‖Bp ≤ C. Since
|wn| → ∞, for each n we can find a (unique) rn in the interval [0, 1) such that

|wn| =
(

log
1

1− r2
n

)1−1/p
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Recalling the definition of fr,p and cr,p given in (8), we define cn := crn,p and

fn(z) := Cei arg wn
log 1

1−rnz(
log 1

1−r2
n

)1/p
= Cc−1

n ei arg wnfrn,p.

Then fn has the properties

(21) fn(rn) = Cwn , |fn(rn)| = C

(
log

1

1− r2
n

)1−1/p

.

Moreover, each fn ∈ Bp and has Bp norm C/cn, which is uniformly bounded.
Using the boundedness assumptions on Sϕ, together with (5), (20), and (21), we have

K ≥ ‖ϕ ◦ fn‖q
Aq ≥ (1− rn)2|ϕ(fn(rn))|q

≥ (1− rn)2 exp
(
qσ|fn(rn)|p/(p−1)

)

≥ (1− rn)2 exp

(
qσCp/(p−1) log

1

1− r2
n

)

& (1− rn)2−qσCp/(p−1)

,

which is impossible in view of our choice of C.
The B0 case is similar. If Sϕ maps B0 boundedly into Aq but ϕ /∈ E0(1), then there

exists σ > 0 and {wn} such that 1 < |wn| → ∞ and

|ϕ(wn)| ≥ exp (σ|wn|) , n ∈ N .

Now choose C > 2/qσ. Since Sϕ is bounded, there exists a constant K with the property
that ‖ϕ ◦ f‖q

Aq ≤ K whenever ‖f‖Bp ≤ C. For each n we can find a (unique) rn ∈ [0, 1)
such that

|wn| = 1

2
log

1 + r2
n

1− r2
n

Let

fn(z) :=
Cei arg wn

2
log

1 + rnz

1− rnz
.

Then fn has the properties

(22) fn(rn) = Cwn , |fn(rn)| = C log
1 + r2

n

1− r2
n

.

Moreover, each fn ∈ B0 and ‖fn‖B0 ≤ C.
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As before, we then get

K ≥ ‖ϕ ◦ fn‖q
Aq ≥ (1− rn)2|ϕ(fn(rn))|q

≥ (1− rn)2 exp (qσ|fn(rn)|)
≥ (1− rn)2 exp

(
qσC log

1 + r2
n

1− r2
n

)

& (1− rn)2−qσC ,

which is impossible in view of our choice of C.
As mentioned earlier, Montel compactness follows from compactness of the embedding

of Ar in Aq. ¤
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