Skip to main content
Log in

Understanding the Regulatory Mechanisms of Rice Tiller Angle, Then and Now

  • Review
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

A Correction to this article was published on 13 November 2021

This article has been updated

Abstract

Rice is one of the most important crops worldwide, whose yield is vital to human nutrition in the context of a rapidly growing world population. Plant architecture significantly affects grain yield, which is to a large extent determined by tiller angle and tiller number. Tiller angle is the angle between the primary tiller and the main culm. Its regulation is complex and is influenced by multiple environmental and genetic factors. This review provides an overview of the regulation of tiller angle in rice, with particular focus on the roles of the growth environment and method of cultivation; phytohormones such as auxin, gibberellins, and strigolactones; gravity; and genes related to the control of tiller angle. The major research foci and the outlook for research into the regulation of tiller angle in rice are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273(5277):948–950

    CAS  PubMed  Google Scholar 

  • Chen P, Jiang L, Yu CY, Zhang WW, Wang JK, Wan JM (2008) The identification and mapping of a tiller angle QTL on rice chromosome 9. Crop Sci 48:1799–1806

    CAS  Google Scholar 

  • Chen YN, Fan XR, Song WJ, Zhang YL, Xu GH (2012) Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol J 10:139–149

    CAS  PubMed  Google Scholar 

  • Chen Y, Dan Z, Gao F, Chen P, Fan F, Li S (2020) Rice GROWTH-REGULATING FACTOR7 modulates plant architecture through regulating GA and Indole-3-acetic acid metabolism. Plant Physiol 184(1):393–406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colasanti J, Tremblay R, Wong A, Coneva V, Kozaki A, Mable BK (2006) The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants. BMC Genomics 7:158

    PubMed  PubMed Central  Google Scholar 

  • Cui D, Neill SJ, Tang ZC, Cai WM (2005) Gibberellin-regulated XET is differentially induced by auxin in rice leaf sheath bases during gravitropic bending. J Exp Bot 56:1327–1334

    CAS  PubMed  Google Scholar 

  • Dong HJ, Zhao H, Xie WB, Han ZM, Li GW, Yao W, Bai XF, Hu Y, Guo ZL, Lu K, Yang L, Xing YZ (2016) A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars. PLoS Genet 12:e1006412

    PubMed  PubMed Central  Google Scholar 

  • Gallavotti A (2013) The role of auxin in shaping shoot architecture. J Exp Bot 64:2593–2608

    CAS  PubMed  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Page V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    CAS  PubMed  Google Scholar 

  • Harmoko R, Yoo JY, Ko KS, Ramasamy NK, Hwang BY, Lee J, Kim HS, Lee KJ, Doo-Byoung O, Kim DY, Lee SH, Li Y, Lee SY, Lee KO (2016) N-glycan containing a core α1, 3-fucose residue is required for basipetal auxin transport and gravitropic response in rice (Oryza sativa). New Phytol 212:108–122

    CAS  PubMed  Google Scholar 

  • He JW, Shao GN, Wei XJ, Huang FL, Sheng ZH, Tang SQ, Hu PS (2017) Fine mapping and candidate gene analysis of qTAC8, a major quantitative trait locus controlling tiller angle in rice (Oryza sativa L.). PLoS One 12(5):e0178177

    PubMed  PubMed Central  Google Scholar 

  • Hedden P, Sponsel V (2015) A century of gibberellin research. J Plant Growth Regul 34:740–760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano K, Okuno A, Hobo T, Ordonio R, Shinozaki Y, Asano K, Kitano H, Matsuoka M (2014) Utilization of stiff culm trait of rice smos1 mutant for increased lodging resistance. PLoS One 9(7):e96009

    PubMed  PubMed Central  Google Scholar 

  • Hofmann NR (2018) The dynamic transcriptome: using clustered time points to tease apart rice tiller angle control. Plant Cell 30:1381–1382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Li SL, Fan XW, Song S, Zhou X, Weng XY, Xiao JH, Li XH, Xiong LZ, You AQ, Xing YZ (2020) OsHOX1 and OsHOX28 redundantly shape rice tiller angle by reducing HSFA2D expression and auxin content. Plant Physiol 184(3):1424–1437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang JH, Tan LB, Zhu ZF, Fu YC, Liu FX, Cai HW, Sun CQ (2012) Molecular evolution of the TAC1 gene from rice (Oryza sativa L.). J Genet Genomics 39:551–560

    CAS  PubMed  Google Scholar 

  • Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX (2008) Genetic control of rice plant architecture under domestication. Nat Genet 40:1365–1369

    CAS  PubMed  Google Scholar 

  • Kang WQ, Ouyang YN, Zhang SQ, Zhu LF, Yu SM, Xu DH, Jin QY (2007) Morphological and ontogenic characterization of rice with dynamic tiller angle. Chinese J Rice Sci 04:372–378

    Google Scholar 

  • Leyser O (2003) Regulation of shoot branching by auxin. Trends Plant Sci 8:541–545

    CAS  PubMed  Google Scholar 

  • Li H, Sun HY, Jiang JH, Sun XY, Tan LB, Sun CQ (2020) TAC4 controls tiller angle by regulating the endogenous auxin content and distribution in rice. Plant Biotechnol J. https://doi.org/10.1111/pbi.13440

    Article  PubMed  PubMed Central  Google Scholar 

  • Li PJ, Wang YH, Qian Q, Fu ZM, Wang M, Zeng DL, Li BH, Wang XJ, Li JY (2007) LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res 17:402–410

    CAS  PubMed  Google Scholar 

  • Li Y, Li J, Chen Z, Wei Y, Qi Y, Wu C (2020) OsmiR167a-targeted auxin response factors modulated tiller angle via fine-tuning auxin distribution in rice. Plant Biotechnol J. https://doi.org/10.1111/pbi.13360

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Paterson A, Pinson S, Stansel J (1999) RFLP facilitated analysis of tiller and leaf angles in rice (Oryza Sativa L.). Euphytica 109:79–84

    CAS  Google Scholar 

  • Li Z, Liang Y, Yuan Y, Wang L, Meng X, Xiong G, Zhou J, Cai Y, Han N, Hua L, Liu G, Li J, Wang Y (2019) OsBRXL4 regulates shoot gravitropism and rice tiller angle through affecting LAZY1 nuclear localization. Mol Plant 12:1143–1156

    CAS  PubMed  Google Scholar 

  • Liang Y, Wang YH (2016) The genes controlling rice architecture and its application in breeding. Chin Bull Life Sci 28:1156–1167

    Google Scholar 

  • Luan YX, Wang BS, Zhao Q, Ao GM, Yu JJ (2010) Ectopic expression of foxtail millet zip-like gene, SiPf40, in transgenic rice plants causes a pleiotropic phenotype affecting tillering, vascular distribution and root development. Sci China Life Sci 53:1450–1458

    CAS  PubMed  Google Scholar 

  • Mao CZ, Ding W, Wu YR, Yu J, He XW, Shou HX, Wu P (2007) Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytol 176:288–298

    CAS  PubMed  Google Scholar 

  • Morita R, Sugino M, Hatanaka T, Misoo S, Fukayama H (2015) CO2-Responsive CONSTANS, CONSTANS-Like, and Time of Chlorophyll a/b Binding Protein Expression1 Protein Is a Positive Regulator of Starch Synthesis in Vegetative Organs of Rice. Plant Physiol 167:1321–1331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muday K, Murphy AS (2002) An emerging model of auxin transport regulation. Plant Cell 14:293–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Myers AB, Firn RD, Digby J (1994) Gravitropic sign reversal-a fundamental feature of the gravitropic perception or response mechanisms in some plant organs. J Exp Bot 45:77–83

    Google Scholar 

  • Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3(7):677–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okamura M, Hirose T, Hashida Y, Ohsugi R, Aoki N (2015) Suppression of starch synthesis in rice stems splays tiller angle due to gravitropic insensitivity but does not affect yield. Funct Plant Biol 42:31–41

    CAS  Google Scholar 

  • Ouyang YN, Li CS, Zhang SQ, Wang HM, Zhu LF, Yu SM, Jin QY, Zhang GP (2009) Dynamic changes of rice (Oryza Sativa L.) tiller angle under effects of photoperiod and effective accumulated temperature. Chin J Appl Ecol (Chinese) 20:1099–1104

    Google Scholar 

  • Roychoudhry S, Kepinski S (2015) Shoot and root branch growth angle control-the wonderfulness of lateralness. Plant Biol 23:124–131

    Google Scholar 

  • Sakuraba Y, Piao W, Lim JH, Han SH, Kim YS, An GH, Paek NC (2015) Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle. Plant Cell Physiol 56(12):2325–2339

    CAS  PubMed  Google Scholar 

  • Sang DJ, Chen DQ, Liu GF, Liang Y, Huang LZ, Meng XB, Chu JF, Sun XH, Dong GJ, Yuan YD, Qian Q, Li JY, Wang YH (2014) Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis. Proc Natl Acad Sci USA 111:11199–11204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki T (2008) From the editor’s desk Rice 1:1–2

    Google Scholar 

  • Shah L, Yahya M, Shah SMA, Nadeem M, Ali A, Ali A, Wang J, Riaz MW, Rehman S, Wu WX, Khan RM, Abbas A, Riaz A, Anis GB, Si HQ, Jiang HY, Ma CX (2019) Improving lodging resistance: using wheat and rice as classical examples. Int J Mol Sci 20(17):4211

    PubMed Central  Google Scholar 

  • Shinohara N, Taylor C, Leyser O (2013) Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol 11(1):e1001474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan LB, Li XR, Liu FX, Sun XY, Li CG, Zhu ZF, Fu YC, Cai HW, Wang XK, Xie DX, Sun CQ (2008) Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40:1360–1364

    CAS  PubMed  Google Scholar 

  • Vandenbrink JP, Kissa JZ (2019) Plant responses to gravity. Semin Cell Dev Biol 92:122–125

    CAS  PubMed  Google Scholar 

  • Wang JR, Hu H, Wang GH, Li J, Chen JY, Wu P (2009) Expression of PIN genes in rice (Oryza sativa L.): tissue specificity and regulation by hormones. Mol Plant 4:823–831

    Google Scholar 

  • Wang L, Xu YY, Zhang C, Ma QB, Joo SH, Kim SK, Xu ZH, Chong K (2008) OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS One 3:e3521

    PubMed  PubMed Central  Google Scholar 

  • Wang ST, Guo XF, Yao TS, Xuan YH (2020) Indeterminate domain 3 negatively regulates plant erectness and the resistance of rice to sheath blightby controlling PIN-FORMED gene expressions. Plant Signal Behav 15(11):e1809847

    Google Scholar 

  • Wu XR, Tang D, Li M, Wang KJ, Cheng ZK (2013) Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol 161:317–329

    CAS  PubMed  Google Scholar 

  • Wu YZ, Zhao SS, Li XR, Zhang BS, Jiang LY, Tang YY, Zhao J, Ma X, Cai HW, Sun CQ, Tan LB (2018) Deletions linked to PROG1 gene participate in plant architecture domestication in Asian and African rice. Nat Commun 9:4157

    PubMed  PubMed Central  Google Scholar 

  • Xie CM, Zhang G, An L, Chen XY, Fang RX (2019) Phytochrome-interacting factor-like protein OsPIL15 integrates light and gravitropism to regulate tiller angle in rice. Planta 250(1):105–114

    CAS  PubMed  Google Scholar 

  • Xu M, Zhu L, Shou HX, Wu P (2005) A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol 46:1674–1681

    CAS  PubMed  Google Scholar 

  • Yoshihara T, Iino M (2007) Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and -independent gravity signaling pathways. Plant Cell Physiol 48:678–688

    CAS  PubMed  Google Scholar 

  • Yu BS, Lin ZW, Li HX, Li XJ, Li JY, Wang YH, Zhang X, Zhu ZF, Zhai WX, Wang XK, Xie DX, Sun CQ (2007) TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J 52:891–898

    CAS  PubMed  Google Scholar 

  • Zhang N, Yu H, Yu H, Cai YY, Huang LZ, Xu C, Xiong GS, Meng XB, Wang JY, Chen HF, Liu GF, Jing YH, Yuan YD, Liang Y, Li SJ, Smith S, Li JY, Wang YH (2018) A core regulatory pathway controlling rice tiller angle mediated by the LAZY1-dependent asymmetric distribution of auxin. Plant Cell 30:1461–1475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang WF, Tan LB, Sun HY, Zhao XH, Liu FX, Cai HW, Fu YC, Sun XY, Gu P, Zhuang ZF, Sun CQ (2019) Natural variations at TIG1 encoding a TCP transcription factor contribute to plant architecture domestication in rice. Mol Plant 12:1075–1089

    CAS  PubMed  Google Scholar 

  • Zhao L, Tan LB, Zhu ZF, Xiao LT, Xie DX, Sun CQ (2015) PAY1 improves plant architecture and enhances grain yield in rice. Plant J 83:528–536

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagang Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Li, L. & Jiang, D. Understanding the Regulatory Mechanisms of Rice Tiller Angle, Then and Now. Plant Mol Biol Rep 39, 640–647 (2021). https://doi.org/10.1007/s11105-021-01279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-021-01279-6

Keywords

Navigation